Boucher, R. C. Relationship of airway epithelial ion transport to chronic bronchitis. Proc. Am. Thorac. Soc.1, 66–70 (2004). ArticleCASPubMed Google Scholar
Armstrong, D. S. et al. Lower respiratory infection and inflammation in infants with newly diagnosed cystic fibrosis. BMJ310, 1571–1572 (1995). ArticleCASPubMed CentralPubMed Google Scholar
Armstrong, D. S. et al. Lower airway inflammation in infants with cystic fibrosis detected by newborn screening. Pediatr. Pulmonol.40, 500–510 (2005). ArticlePubMed Google Scholar
Hoiby, N., Frederiksen, B. & Pressler, T. Eradication of early Pseudomonas aeruginosa infection. J. Cyst. Fibros.4, 49–54 (2005). ArticleCASPubMed Google Scholar
Cystic Fibrosis Foundation. Cystic Fibrosis Foundation patient registry 2010 annual data report (Cystic Fibrosis Foundation, 2011).
Bjarnsholt, T. et al. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr. Pulmonol.44, 547–558 (2009). ArticlePubMed Google Scholar
Yang, L., Jelsbak, L. & Molin, S. Microbial ecology and adaptation in cystic fibrosis airways. Environ. Microbiol.13, 1682–1689 (2011). ArticleCASPubMed Google Scholar
Hansen, C. R., Pressler, T. & Hoiby, N. Early aggressive eradication therapy for intermittent Pseudomonas aeruginosa airway colonization in cystic fibrosis patients: 15 years experience. J. Cyst. Fibros.7, 523–530 (2008). ArticleCASPubMed Google Scholar
Rasmussen, J. et al. CT of the paranasal sinuses is not a valid indicator for sinus surgery in CF patients. J. Cyst. Fibros.11, 93–99 (2012). ArticlePubMed Google Scholar
Harrison, F. Microbial ecology of the cystic fibrosis lung. Microbiology153, 917–923 (2007). ArticleCASPubMed Google Scholar
Koch, C. Early infection and progression of cystic fibrosis lung disease. Pediatr. Pulmonol.34, 232–236 (2002). ArticlePubMed Google Scholar
Hoiby, N. & Johansen, H. K. Isolation measures for prevention of infection with respiratory pathogens in cystic fibrosis: a systematic review? J. Hosp. Infect.65, 374–375 (2007). ArticleCASPubMed Google Scholar
FitzSimmons, S. C. The changing epidemiology of cystic fibrosis. J. Pediatr.122, 1–9 (1993). ArticleCASPubMed Google Scholar
Burns, J. L. et al. Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J. Infect. Dis.183, 444–452 (2001). ArticleCASPubMed Google Scholar
Johansen, H. K. & Hoiby, N. Seasonal onset of initial colonisation and chronic infection with Pseudomonas aeruginosa in patients with cystic fibrosis in Denmark. Thorax47, 109–111 (1992). ArticleCASPubMed CentralPubMed Google Scholar
Doring, G., Taccetti, G., Campana, S., Festini, F. & Mascherini, M. Eradication of Pseudomonas aeruginosa in cystic fibrosis patients. Eur. Respir. J.27, 653 (2006). ArticleCASPubMed Google Scholar
Gibson, R. L. et al. Significant microbiological effect of inhaled tobramycin in young children with cystic fibrosis. Am. J. Respir. Crit. Care Med.167, 841–849 (2003). ArticlePubMed Google Scholar
Munck, A. et al. Genotypic characterization of Pseudomonas aeruginosa strains recovered from patients with cystic fibrosis after initial and subsequent colonization. Pediatr. Pulmonol.32, 288–292 (2001). ArticleCASPubMed Google Scholar
Jelsbak, L. et al. Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect. Immun.75, 2214–2224 (2007). ArticleCASPubMed CentralPubMed Google Scholar
Doring, G. et al. Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur. Respir. J.16, 749–767 (2000). ArticleCASPubMed Google Scholar
Doring, G. & Hoiby, N. Early intervention and prevention of lung disease in cystic fibrosis: a European consensus. J. Cyst. Fibros.3, 67–91 (2004). ArticlePubMed Google Scholar
Lee, T. W., Brownlee, K. G., Conway, S. P., Denton, M. & Littlewood, J. M. Evaluation of a new definition for chronic Pseudomonas aeruginosa infection in cystic fibrosis patients. J. Cyst. Fibros.2, 29–34 (2003). ArticlePubMed Google Scholar
Nichols, D., Chmiel, J. & Berger, M. Chronic inflammation in the cystic fibrosis lung: alterations in inter- and intracellular signaling. Clin. Rev. Allergy Immunol.34, 146–162 (2008). ArticleCASPubMed Google Scholar
Regamey, N., Jeffery, P. K., Alton, E. W., Bush, A. & Davies, J. C. Airway remodelling and its relationship to inflammation in cystic fibrosis. Thorax66, 624–629 (2011). ArticlePubMed Google Scholar
Anderson, G. G., Moreau-Marquis, S., Stanton, B. A. & O'Toole, G. A. In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells. Infect. Immun.76, 1423–1433 (2008). ArticleCASPubMed CentralPubMed Google Scholar
Aspedon, A., Palmer, K. & Whiteley, M. Microarray analysis of the osmotic stress response in Pseudomonas aeruginosa. J. Bacteriol.188, 2721–2725 (2006). ArticleCASPubMed CentralPubMed Google Scholar
Bagge, N. et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β-lactamase and alginate production. Antimicrob. Agents Chemother.48, 1175–1187 (2004). ArticleCASPubMed CentralPubMed Google Scholar
Cirz, R. T., O'Neill, B. M., Hammond, J. A., Head, S. R. & Romesberg, F. E. Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin. J. Bacteriol.188, 7101–7110 (2006). ArticleCASPubMed CentralPubMed Google Scholar
Jones, A. K. et al. Activation of the Pseudomonas aeruginosa AlgU regulon through mucA mutation inhibits cyclic AMP/Vfr signaling. J. Bacteriol.192, 5709–5717 (2010). ArticleCASPubMed CentralPubMed Google Scholar
Wu, W., Badrane, H., Arora, S., Baker, H. V. & Jin, S. MucA-mediated coordination of type III secretion and alginate synthesis in Pseudomonas aeruginosa. J. Bacteriol.186, 7575–7585 (2004). ArticleCASPubMed CentralPubMed Google Scholar
Rau, M. H. et al. Early adaptive developments of Pseudomonas aeruginosa after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts. Environ. Microbiol.12, 1643–1658 (2010). CASPubMed Google Scholar
Yang, L. et al. Evolutionary dynamics of bacteria in a human host environment. Proc. Natl Acad. Sci. USA108, 7481–7486 (2011). This report outlines the evolutionary dynamics of a transmissibleP. aeruginosaclone (DK2) during 35 years of growth in a CF airway. ArticleCASPubMedPubMed Central Google Scholar
Hull, J., Vervaart, P., Grimwood, K. & Phelan, P. Pulmonary oxidative stress response in young children with cystic fibrosis. Thorax52, 557–560 (1997). ArticleCASPubMed CentralPubMed Google Scholar
Hudson, A. L., Sotirchos, I. M., Davey, M. W. & Hudson, V. M. The activity and hydrogen peroxide sensitivity of the peroxiredoxins from the parasitic nematode Haemonchus contortus. Mol. Biochem. Parasitol.176, 17–24 (2011). ArticleCASPubMed Google Scholar
Hudson, V. M. Rethinking cystic fibrosis pathology: the critical role of abnormal reduced glutathione (GSH) transport caused by CFTR mutation. Free Radic. Biol. Med.30, 1440–1461 (2001). ArticleCASPubMed Google Scholar
Back, E. I. et al. Antioxidant deficiency in cystic fibrosis: when is the right time to take action? Am. J. Clin. Nutr.80, 374–384 (2004). ArticleCASPubMed Google Scholar
Worlitzsch, D. et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Invest.109, 317–325 (2002). ArticleCASPubMed CentralPubMed Google Scholar
Kolpen, M. et al. Polymorphonuclear leucocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis. Thorax65, 57–62 (2010). ArticleCASPubMed Google Scholar
Hauser, A. R., Jain, M., Bar-Meir, M. & McColley, S. A. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin. Microbiol. Rev.24, 29–70 (2011). ArticleCASPubMed CentralPubMed Google Scholar
Johansen, H. K. et al. Antibody response to Pseudomonas aeruginosa in cystic fibrosis patients: a marker of therapeutic success? A 30-year cohort study of survival in Danish CF patients after onset of chronic P. aeruginosa lung infection. Pediatr. Pulmonol.37, 427–432 (2004). ArticlePubMed Google Scholar
Lister, P. D., Wolter, D. J. & Hanson, N. D. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev.22, 582–610 (2009). ArticleCASPubMed CentralPubMed Google Scholar
Bert, F., Branger, C. & Lambert-Zechovsky, N. Identification of PSE and OXA β-lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism. J. Antimicrob. Chemother.50, 11–18 (2002). ArticleCASPubMed Google Scholar
MacLeod, D. L. et al. Aminoglycoside-resistance mechanisms for cystic fibrosis Pseudomonas aeruginosa isolates are unchanged by long-term, intermittent, inhaled tobramycin treatment. J. Infect. Dis.181, 1180–1184 (2000). ArticleCASPubMed Google Scholar
Smith, E. E. et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl Acad. Sci. USA103, 8487–8492 (2006). This paper describes the genomic analysis of longitudinal isolates ofP. aeruginosasampled from a young patient with CF, and provides a first insight into how this pathogen adapts to its human host. ArticleCASPubMedPubMed Central Google Scholar
Costerton, J. W., Irvin, R. T. & Cheng, K. J. The bacterial glycocalyx in nature and disease. Annu. Rev. Microbiol.35, 299–324 (1981). ArticleCASPubMed Google Scholar
Cabral, D. A., Loh, B. A. & Speert, D. P. Mucoid Pseudomonas aeruginosa resists nonopsonic phagocytosis by human neutrophils and macrophages. Pediatr. Res.22, 429–431 (1987). ArticleCASPubMed Google Scholar
Meshulam, T., Obedeanu, N., Merzbach, D. & Sobel, J. D. Phagocytosis of mucoid and nonmucoid strains of Pseudomonas aeruginosa. Clin. Immunol. Immunopathol.32, 151–165 (1984). ArticleCASPubMed Google Scholar
Meshulam, T., Verbrugh, H. A. & Verhoef, J. Opsonization and phagocytosis of mucoid and non-mucoid Pseudomonas aeruginosa strains. Eur. J. Clin. Microbiol.1, 112–117 (1982). ArticleCASPubMed Google Scholar
Simpson, J. A., Smith, S. E. & Dean, R. T. Scavenging by alginate of free radicals released by macrophages. Free Radic. Biol. Med.6, 347–353 (1989). ArticleCASPubMed Google Scholar
Pedersen, S. S., Kharazmi, A., Espersen, F. & Hoiby, N. Pseudomonas aeruginosa alginate in cystic fibrosis sputum and the inflammatory response. Infect. Immun.58, 3363–3368 (1990). CASPubMed CentralPubMed Google Scholar
Govan, J. R. & Deretic, V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev.60, 539–574 (1996). CASPubMed CentralPubMed Google Scholar
Pedersen, S. S. Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. APMIS Suppl.28, 1–79 (1992). CASPubMed Google Scholar
Martin, D. W. et al. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc. Natl Acad. Sci. USA90, 8377–8381 (1993). ArticleCASPubMedPubMed Central Google Scholar
Boucher, J. C., Yu, H., Mudd, M. H. & Deretic, V. Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect. Immun.65, 3838–3846 (1997). CASPubMed CentralPubMed Google Scholar
Wood, L. F. & Ohman, D. E. Identification of genes in the σ22 regulon of Pseudomonas aeruginosa required for cell envelope homeostasis in either the planktonic or the sessile mode of growth. mBio3, e00094–12 (2012). ArticleCASPubMed CentralPubMed Google Scholar
Ramsey, D. M. & Wozniak, D. J. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol. Microbiol.56, 309–322 (2005). ArticleCASPubMed Google Scholar
Deretic, V., Schurr, M. J., Boucher, J. C. & Martin, D. W. Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis: environmental stress and regulation of bacterial virulence by alternative sigma factors. J. Bacteriol.176, 2773–2780 (1994). ArticleCASPubMed CentralPubMed Google Scholar
Chitnis, C. E. & Ohman, D. E. Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol. Microbiol.8, 583–593 (1993). ArticleCASPubMed Google Scholar
DeVries, C. A. & Ohman, D. E. Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation. J. Bacteriol.176, 6677–6687 (1994). ArticleCASPubMed CentralPubMed Google Scholar
Wood, L. F. & Ohman, D. E. Use of cell wall stress to characterize σ22 (AlgT/U) activation by regulated proteolysis and its regulon in Pseudomonas aeruginosa. Mol. Microbiol.72, 183–201 (2009). ArticleCASPubMed Google Scholar
Wood, L. F., Leech, A. J. & Ohman, D. E. Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: roles of σ22 (AlgT) and the AlgW and Prc proteases. Mol. Microbiol.62, 412–426 (2006). ArticleCASPubMed Google Scholar
Ciofu, O., Fussing, V., Bagge, N., Koch, C. & Hoiby, N. Characterization of paired mucoid/non-mucoid Pseudomonas aeruginosa isolates from Danish cystic fibrosis patients: antibiotic resistance, β-lactamase activity and RiboPrinting. J. Antimicrob. Chemother.48, 391–396 (2001). ArticleCASPubMed Google Scholar
Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature.394, 69–72 (1998). ArticleCASPubMed Google Scholar
Mowat, E. et al. Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am. J. Respir. Crit. Care Med.183, 1674–1679 (2011). ArticlePubMed Google Scholar
Hansen, S. K. et al. Evolution and diversification of Pseudomonas aeruginosa in the paranasal sinuses of cystic fibrosis children have implications for chronic lung infection. ISME J.6, 31–45 (2012). ArticlePubMed Google Scholar
Oliver, A., Canton, R., Campo, P., Baquero, F. & Blazquez, J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science288, 1251–1254 (2000). ArticleCASPubMed Google Scholar
Hassett, D. J. et al. Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies. Expert Opin. Ther. Targets14, 117–130 (2010). ArticleCASPubMed Google Scholar
Fokkens, W. J. et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology50, 1–12 (2012). ArticlePubMed Google Scholar
Johansen, H. K. et al. Colonisation and infection of the paranasal sinuses in cystic fibrosis patients is accompanied by a reduced PMN response. J. Cyst. Fibros. 15 May 2012 (doi:10.1016/j.jcf.2012.04.011). ArticleCASPubMed Google Scholar
Aanaes, K. et al. Decreased mucosal oxygen tension in the maxillary sinuses in patients with cystic fibrosis. J. Cyst. Fibros.10, 114–120 (2011). ArticlePubMed Google Scholar
Robertson, J. M., Friedman, E. M. & Rubin, B. K. Nasal and sinus disease in cystic fibrosis. Paediatr. Respir. Rev.9, 213–219 (2008). ArticlePubMed Google Scholar
Mainz, J. G. et al. Concordant genotype of upper and lower airways P.aeruginosa and S.aureus isolates in cystic fibrosis. Thorax64, 535–540 (2009). ArticleCASPubMed Google Scholar
Bonestroo, H. J., de Winter-de Groot, K. M., van der Ent, C. K. & Arets, H. G. Upper and lower airway cultures in children with cystic fibrosis: do not neglect the upper airways. J. Cyst. Fibros.9, 130–134 (2010). ArticlePubMed Google Scholar
West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nature Rev. Microbiol.4, 597–607 (2006). ArticleCAS Google Scholar
Hoffman, L. R. et al. Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J. Cyst. Fibros.8, 66–70 (2009). ArticleCASPubMed Google Scholar
D'Argenio, D. A. et al. Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol. Microbiol.64, 512–533 (2007). ArticleCASPubMed CentralPubMed Google Scholar
Cramer, N. et al. Microevolution of the major common Pseudomonas aeruginosa clones C and PA14 in cystic fibrosis lungs. Environ. Microbiol.13, 1690–1704 (2011). ArticleCASPubMed Google Scholar
Blount, Z. D., Borland, C. Z. & Lenski, R. E. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc. Natl Acad. Sci. USA105, 7899–7906 (2008). ArticleCASPubMed CentralPubMed Google Scholar
Weinreich, D. M., Delaney, N. F., Depristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science312, 111–114 (2006). CASPubMed Google Scholar
Mahenthiralingam, E., Campbell, M. E., Foster, J., Lam, J. S. & Speert, D. P. Random amplified polymorphic DNA typing of Pseudomonas aeruginosa isolates recovered from patients with cystic fibrosis. J. Clin. Microbiol.34, 1129–1135 (1996). CASPubMed CentralPubMed Google Scholar
Romling, U. et al. Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis. J. Infect. Dis.170, 1616–1621 (1994). ArticleCASPubMed Google Scholar
Jelsbak, L. et al. Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect. Immun.75, 2214–2224 (2007). ArticleCASPubMed CentralPubMed Google Scholar
Yang, L. et al. In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections. J. Bacteriol.190, 2767–2776 (2008). ArticleCASPubMed Google Scholar
Lieberman, T. D. et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nature Genet.43, 1275–1280 (2011). This article provides an example of genomic evolution in a CF-associated pathogen. ArticleCASPubMed Google Scholar
Cramer, N., Wiehlmann, L. & Tummler, B. Clonal epidemiology of Pseudomonas aeruginosa in cystic fibrosis. Int. J. Med. Microbiol.300, 526–533 (2010). ArticlePubMed Google Scholar
Bragonzi, A. et al. Pseudomonas aeruginosa microevolution during cystic fibrosis lung infection establishes clones with adapted virulence. Am. J. Respir. Crit. Care Med.180, 138–145 (2009). ArticlePubMed Google Scholar
Hoboth, C. et al. Dynamics of adaptive microevolution of hypermutable Pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis. J. Infect. Dis.200, 118–130 (2009). ArticleCASPubMed Google Scholar
Hogardt, M. & Heesemann, J. Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. Int. J. Med. Microbiol.300, 557–562 (2010). ArticleCASPubMed Google Scholar
Barrick, J. E. et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature461, 1243–1247 (2009). This work uses laboratory evolution experiments combined with genomic analysis to investigate evolution in action. ArticleCASPubMed Google Scholar
Cooper, V. S. & Lenski, R. E. The population genetics of ecological specialization in evolving Escherichia coli populations. Nature407, 736–739 (2000). ArticleCASPubMed Google Scholar
Silander, O. K., Tenaillon, O. & Chao, L. Understanding the evolutionary fate of finite populations: the dynamics of mutational effects. PLoS Biol.5, e94 (2007). ArticlePubMed CentralCASPubMed Google Scholar
Hansen, S. K. et al. Characterization of a Pseudomonas putida rough variant evolved in a mixed-species biofilm with Acinetobacter sp. strain C6. J. Bacteriol.189, 4932–4943 (2007). ArticleCASPubMed CentralPubMed Google Scholar
Boles, B. R., Thoendel, M. & Singh, P. K. Self-generated diversity produces “insurance effects” in biofilm communities. Proc. Natl Acad. Sci. USA101, 16630–16635 (2004). ArticleCASPubMedPubMed Central Google Scholar
Keymer, J. E., Galajda, P., Muldoon, C., Park, S. & Austin, R. H. Bacterial metapopulations in nanofabricated landscapes. Proc. Natl Acad. Sci. USA103, 17290–17295 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wilder, C. N., Allada, G. & Schuster, M. Instantaneous within-patient diversity of Pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung infections. Infect. Immun.77, 5631–5639 (2009). ArticleCASPubMed CentralPubMed Google Scholar
Hunter, P. The great leap forward. Major evolutionary jumps might be caused by changes in gene regulation rather than the emergence of new genes. EMBO Rep.9, 608–611 (2008). ArticleCASPubMed CentralPubMed Google Scholar
Wang, L. et al. Divergence involving global regulatory gene mutations in an Escherichia coli population evolving under phosphate limitation. Genome Biol. Evol.2, 478–487 (2010). ArticlePubMed CentralCASPubMed Google Scholar
Zambrano, M. M., Siegele, D. A., Almiron, M., Tormo, A. & Kolter, R. Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science259, 1757–1760 (1993). ArticleCASPubMed Google Scholar
Conrad, T. M., Lewis, N. E. & Palsson, B. O. Microbial laboratory evolution in the era of genome-scale science. Mol. Syst. Biol.7, 509 (2011). ArticlePubMed CentralPubMed Google Scholar
Sumby, P., Whitney, A. R., Graviss, E. A., DeLeo, F. R. & Musser, J. M. Genome-wide analysis of group a streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog.2, e5 (2006). ArticlePubMed CentralCASPubMed Google Scholar
Kresse, A. U., Dinesh, S. D., Larbig, K. & Romling, U. Impact of large chromosomal inversions on the adaptation and evolution of Pseudomonas aeruginosa chronically colonizing cystic fibrosis lungs. Mol. Microbiol.47, 145–158 (2003). ArticleCASPubMed Google Scholar
Klockgether, J., Cramer, N., Wiehlmann, L., Davenport, C. F. & Tummler, B. Pseudomonas aeruginosa genomic structure and diversity. Front. Microbiol.2, 150 (2011). ArticleCASPubMed CentralPubMed Google Scholar
Hindre, T., Knibbe, C., Beslon, G. & Schneider, D. New insights into bacterial adaptation through in vivo and in silico experimental evolution. Nature Rev. Microbiol.10, 352–365 (2012). This review describes how experimental evolution studies have provided fundamental insight into bacterial adaptive mechanisms. ArticleCAS Google Scholar
Willner, D. et al. Spatial distribution of microbial communities in the cystic fibrosis lung. ISME J.6, 471–474 (2012). ArticleCASPubMed Google Scholar
Klepac-Ceraj, V. et al. Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas aeruginosa. Environ. Microbiol.12, 1293–1303 (2010). ArticleCASPubMed Google Scholar
Kleinstreuer, C., Zhang, Z. and Donohue, J. F. Targeted drug-aerosol delivery in the human respiratory system. Annu. Rev. Biomed. Eng.10, 195–220 (2008). ArticleCASPubMed Google Scholar
Winnie, G. B. & Cowan, R. G. Respiratory tract colonization with Pseudomonas aeruginosa in cystic fibrosis: correlations between anti-Pseudomonas aeruginosa antibody levels and pulmonary function. Pediatr. Pulmonol.10, 92–100 (1991). ArticleCASPubMed Google Scholar
Martin, D. W., Schurr, M. J., Yu, H. & Deretic, V. Analysis of promoters controlled by the putative sigma factor AlgU regulating conversion to mucoidy in Pseudomonas aeruginosa: relationship to σE and stress response. J. Bacteriol.176, 6688–6696 (1994). ArticleCASPubMed CentralPubMed Google Scholar