Bacterial biofilms: from the Natural environment to infectious diseases (original) (raw)

References

  1. Zobel, C. E. The effect of solid surfaces upon bacterial activity. J. Bacteriol. 46, 39–56 (1943).
    Google Scholar
  2. Doyle, R. (ed.). Microbial growth in biofilms, part A: developmental and molecular biological aspects. Methods Enzymol. 336 (2001).
  3. Doyle, R. (ed.) Microbial growth in biofilms, part B: special environments and physiochemical aspects. Methods Enzymol. 337 (2001).
  4. Westall, F. et al. Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precambrian Res. 106, 93–116 (2001).
    Article CAS Google Scholar
  5. Rasmussen, B. Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405, 676–679 (2000).
    Article CAS PubMed Google Scholar
  6. Reysenbach, A. L. & Cady, S. L. Microbiology of ancient and modern hydrothermal systems Trends Microbiol. 9, 79–86 (2001).
    Article CAS PubMed Google Scholar
  7. Taylor, C. D., Wirsen, C. O. & Gaill, F. Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Appl. Environ. Microbiol. 65, 2253–2255 (1999).
    CAS PubMed PubMed Central Google Scholar
  8. Jahnke, L. L. et al. Signature lipids and stable carbon isotope analyses of octopus spring hyperthermophilic communities compared with those of aquificales representatives. Appl. Environ. Microbiol. 67, 5179–5189 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  9. Reysenbach, A. L., Ehringer, M. & Hershberger, K. Microbial diversity at 83 degrees C in Calcite Springs, Yellowstone National Park: another environment where the Aquificales and 'Korarchaeota' coexist. Extremophiles 4, 61–67 (2000).
    CAS PubMed Google Scholar
  10. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187–209 (2002).
    Article CAS PubMed Google Scholar
  11. Baty, A. M., Eastburn, C. C., Techkarnjanaruk, S., Goodman, A. E. & Geesey, G. G. Spatial and temporal variations in chitinolytic gene expression and bacterial biomass production during chitin degradation. Appl. Environ. Microbiol. 66, 3574–3585 (2000). Discovered that there could be a 'division of labour' in bacterial biofilm populations such that a subset that remained attached could degrade the chitin substratum and provide nutrients for a detached, planktonic subset.
    Article CAS PubMed PubMed Central Google Scholar
  12. Edwards, K. J., Bond, P. L., Gihring, T. M. & Banfield, J. F. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science. 287, 1731–1732 (2000).
    Article Google Scholar
  13. Klausen, M. et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol. 48, 1511–1524 (2003).
    Article CAS PubMed Google Scholar
  14. Stoodley, P., Dodds, I., Boyle, J. D. & Lappin-Scott, H. M. Influence of hydrodynamics and nutrients on biofilm structure. J. Appl. Microbiol. 85, 19S–28S (1999).
    Article Google Scholar
  15. Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184, 1140–1154 (2002). Linked structural development with protein expression in Pseudomonas biofilms thereby demonstrating that biofilms can have regulated 'life-cycles'.
    Article CAS PubMed PubMed Central Google Scholar
  16. Ghigo, J.-M. Are there biofilm-specific physiological pathways beyond a reasonable doubt? Res. Microbiol. 154, 1–8 (2003).
    Article CAS PubMed Google Scholar
  17. van Loosdrecht, M. C., Heijnen, J. J., Eberl, H., Kreft, J. & Picioreanu, C. Mathematical modelling of biofilm structures. Antonie Van Leeuwenhoek. 81, 245–256 (2002).
    Article CAS PubMed Google Scholar
  18. Lawrence, J. R., Korber, D. R., Hoyle, B. D., Costerton, J. W. & Caldwell, D. E. Optical sectioning of microbial biofilms. J. Bacteriol. 173, 6558–6567 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  19. deBeer, D., Stoodley, P., Roe, F. & Lewandowski, Z. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol. Bioeng. 43, 1131–1138 (1994).
    Article CAS Google Scholar
  20. Stoodley, P., de Beer, D. & Lewandowski, Z. Liquid flow in biofilm systems. Appl. Environ. Microbiol. 60, 2711–2716 (1994).
    CAS PubMed PubMed Central Google Scholar
  21. Pratt, L. A. & Kolter, R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30, 285–293 (1998).
    Article CAS PubMed Google Scholar
  22. Reisner, A., Haagensen, J. A., Schembri, M. A., Zechner, E. L. & Molin, S. Development and maturation of Escherichia coli K-12 biofilms. Mol. Microbiol. 48, 933–946 (2003).
    Article CAS PubMed Google Scholar
  23. Tremoulet, F., Duche, O., Namane, A., Martinie, B. & Labadie, J. C. A proteomic study of Escherichia coli O157:H7 NCTC 12900 cultivated in biofilm or in planktonic growth mode. FEMS Microbiol. Lett. 215, 7–14 (2002).
    Article CAS PubMed Google Scholar
  24. Watnick, P. I. & Kolter, R. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol. Microbiol. 34, 586–595 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  25. Kaiser, D. Coupling cell movement to multicellular development in myxobacteria. Nature Rev. Microbiol. 1, 45–54 (2003)
    Article CAS Google Scholar
  26. Fux, C. A., Stoodley, P., Hall-Stoodley, L. & Costerton, W. J. Bacterial biofilms—a diagnostic and therapeutic challenge. Expert Rev. Anti-Infective Ther. 1, 667–683 (2003).
    Article Google Scholar
  27. Hall-Stoodley, L., Keevil, C. W. & Lappin-Scott, H. M. Mycobacterium fortuitum and Mycobacterium chelonae form biofilms under high and low nutrient conditions. J. Appl. Microbiol. 85, S60–S69 (1999).
    Article Google Scholar
  28. Bracco, E. et al. Cell signaling and adhesion in phagocytosis and early development of Dictyostelium. Int. J. Dev. Biol. 4, 733–742 (2000).
    Google Scholar
  29. Hall-Stoodley, L. & Stoodley, P. Development regulation of microbial biofilms. Curr. Opin. Biotech. 13, 228–233 (2002).
    Article CAS PubMed Google Scholar
  30. Kjelleberg, S. & Molin, S. Is there a role for quorum sensing signals in bacterial biofilms? Curr. Opin. Microbiol. 5, 254–258 (2002). Discusses the relative contribution of various environmental factors (such as flow and nutrients) and genetic factors (cell signalling) on biofilm structure.
    Article CAS PubMed Google Scholar
  31. Hunt, S. M., Hamilton, M. A., Sears, J. T., Harkin, G. & Reno, J. A computer investigation of chemically mediated detachment in bacterial biofilms. Microbiology 149, 1155–1163 (2003).
    Article CAS PubMed Google Scholar
  32. Caiazza, N. C. & O'Toole, G. A. Alpha-toxin is required for biofilm formation by Staphylococcus aureus. J. Bacteriol. 185, 3214–3217 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  33. Cucarella, C. et al. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J. Bacteriol. 183, 2888–2928 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  34. Cramton, S. E., Gerke, C., Schnell, N. F., Nichols, W. W. & Cotz, F. The intercellular adhesion (ica) locas is present in Staphylococcus aureus and is required for biofilm formation. Infect. Immun. 67, 5427–5433 (1999).
    CAS PubMed PubMed Central Google Scholar
  35. Hamon, M. A. & Lazazzera, B. A. The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol. Microbiol. 42, 1199–1209 (2001).
    Article CAS PubMed Google Scholar
  36. Froeliger, E. H. & Fives-Taylor, P. Streptococcus parasanguis fimbria-associated adhesion. _Fap_1 is required for biofilm formation. Infect. Immun. 69, 2512–2519 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  37. Gav'n, R. et al. Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation. Mol. Microbiol. 43, 383–397 (2002).
    Article Google Scholar
  38. Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C. & Mattick, J. S. Extracellular DNA required for bacterial biofilm formation. Science 295, 1487 (2002).
    Article CAS PubMed Google Scholar
  39. Valle, J. et al. SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol. Microbiol. 48, 1075–1087 (2003).
    Article CAS PubMed Google Scholar
  40. Davies, D. G. et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298 (1998). Demonstrated that cell–cell communication molecules, associated with the production of virulence factors, have a role in the structure of Pseudomonas biofilms, opening the concept that biofilm structure was genetically regulated.
    Article CAS PubMed Google Scholar
  41. Heydorn, A. et al. Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl. Environ. Microbiol. 68, 2008–2017 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  42. Purevdorj, B., Costerton, J. W. & Stoodley, P. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 68, 4457–4464 (2002). Demonstrated that environmental factors (in this case, flow) can 'override' cell–cell communications as a principal determinant of biofilm structure, illustrating that biofilm development is a multifactorial process influenced by both environmental and genetic factors.
    Article CAS PubMed PubMed Central Google Scholar
  43. Stoodley, P., Jørgensen, F., Williams, P. & Lappin-Scott, H. M. in Biofilms: The Good, the Bad, and the Ugly (eds Bayston, R., Brading, M., Gilbert, P., Walker, J. & Wimpenny, J. W. T.) 323–330 (BioLine, Cardiff, UK, 1999)
    Google Scholar
  44. Stoodley, P., Cargo, R., Rupp, C. J., Wilson, S., & Klapper, I. Biofilm mechanics and shear-induced deformation and detachment. J. Industrial Microbiol. Biotech. 29, 361–368 (2002).
    Article CAS Google Scholar
  45. Boyd, A. & Chakrabarty, A. M. Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 60, 2355–2359 (1994).
    CAS PubMed PubMed Central Google Scholar
  46. Kaplan, J. B., Ragunath, C., Ramasubbu, N. & Fine, D. H. Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous β-hexosaminidase activity. J. Bacteriol. 185, 4693–4698 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  47. Lee, S. F., Li, Y. H. & Bowden, G. H. Detachment of Streptococcus mutans biofilm cells by an endogenous enzymatic activity. Infect. Immun. 64, 1035–1038 (1996).
    CAS PubMed PubMed Central Google Scholar
  48. Piriou, P., Dukan, S., Levi, Y. & Jarrige, P. A. Prevention of bacterial growth in drinking water distribution systems. Water Sci. Technol. 35, 283–287 (1997).
    Article CAS Google Scholar
  49. Zottola, E. A. & Sasahara, K. C. Microbial biofilms in the food industry should they be a concern? Int. J. Food Microbiol. 23, 125–148 (1994).
    Article CAS PubMed Google Scholar
  50. Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520–532 (1998).
    Article CAS PubMed Google Scholar
  51. Pankhurst, C. L., Johnson, N. W. & Woods, R. G. Microbial contamination of dental unit waterlines: the scientific argument. Int. Dent. J. 48, 359–368 (1998).
    Article CAS PubMed Google Scholar
  52. Raad, I. I. Catheter-related septicemia: risk reduction. Infect. Med. 13, 807–812, 815–816, 823 (1996).
    Google Scholar
  53. Purevdorj, B. & Stoodley, P. in Microbial Biofilms. (eds Ghannoum, M. A. and O'Toole, G.) (ASM Press, Washington DC, USA, in the press).
  54. Tolker-Nielsen, T. et al. Development and dynamics of Pseudomonas sp. biofilms. J. Bacteriol. 182, 6482–6489 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  55. Webb, J. S. et al. Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 185, 4585–4592 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  56. Spoering, A. L. & Lewis, K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol. 183, 6746–6751 (2001). Links the antibiotic resistance of biofilms to the stationary phase physiology of cells within the biofilms and the presence of a small phenotypically distinct 'persister' population.
    Article CAS PubMed PubMed Central Google Scholar
  57. Hanlon, G. W., Denyer, S. P., Olliff, C. J. & Ibrahim, L. J. Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 67, 2746–2753 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  58. Kaplan, J. B., Meyenhofer, M. F. & Fine, D. H. Biofilm growth and detachment of Actinobacillus actinomycetemcomitans. J. Bacteriol. 185, 1399–1404 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  59. Kaplan, J. B. & Fine, D. H. Biofilm dispersal of Neisseria subflava and other phylogenetically diverse oral bacteria. Appl. Environ. Microbiol. 68, 4943–4950 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  60. Stoodley, P. et al. Growth and detachment of cell clusters from mature mixed species biofilms. Appl. Environ. Microbiol. 67, 5608–5613 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  61. Mattick, J. S. Type IV pili and twitching motility. Annu. Rev. Microbiol. 56, 289–314 (2002).
    Article CAS PubMed Google Scholar
  62. Stoodley, P., Lewandowski, Z., Boyle, J. D. & Lappin-Scott, H. M. The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. Environ. Microbiol. 1, 447–457 (1999).
    Article CAS PubMed Google Scholar
  63. Inglis, T. J. J. Evidence for dynamic phenomena in residual trachael tube biofilm. Br. J. Anaesth. 70, 22–24 (1993).
    Article CAS PubMed Google Scholar
  64. Stewart, P. S. & Costerton, J. W. Antibiotic resistance of bacteria in biofilms. Lancet. 358, 135–138 (2001).
    Article CAS PubMed Google Scholar
  65. Klapper, I., Rupp, C. J., Cargo, R., Purevdorj, B. & Stoodley, P. A viscoelastic fluid description of bacterial biofilm material properties. Biotech. Bioeng. 80, 289–296 (2002).
    Article CAS Google Scholar
  66. Korstgens, V., Flemming, H. C., Wingender, J. & Borchard, W. Uniaxial compression measurement device for investigation of the mechanical stability of biofilms. J. Microbiol. Meth. 46, 9–17 (2001).
    Article CAS Google Scholar
  67. Towler, B. W., Rupp, C. J., Cunningham, A. B. & Stoodley, P. Viscoelastic properties of a mixed culture biofilm from rheometer creep analysis. Biofouling 19, 279–285 (2003).
    Article PubMed Google Scholar
  68. Vinogradov, A. M., Winston., M., Rupp., C. J. & Stoodley, P. Rheology of biofilms formed from the dental plaque pathogen Streptococcus mutans. Biofilms (in the press).
  69. Espeland, E. M. & Wetzel, R. G. Complexation, stabilization, and UV photolysis of extracellular and surface-bound glucosidase and alkaline phosphatase: implications for biofilm microbiota. Microb. Ecol. 42, 572–585 (2001).
    Article CAS PubMed Google Scholar
  70. Teitzel, G. M. & Parsek, M. R. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol. 69, 2313–2320 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  71. McNeill, K. & Hamilton, I. R. Acid tolerance response of biofilm cells of Streptococcus mutans. FEMS Microbiol. Lett. 221, 25–30 (2003).
    Article CAS PubMed Google Scholar
  72. Le Magrex-Debar, E., Lemoine, J., Gelle, M. P., Jacquelin, L. F. & Choisy, C. Evaluation of biohazards in dehydrated biofilms on foodstuff packaging. Int. J. Food Microbiol. 55, 239–234 (2000).
    Article CAS PubMed Google Scholar
  73. Leid, J. G., Shirtliff, M. E., Costerton, J. W. & Stoodley, P. Human leukocytes adhere, penetrate, and respond to Staphylococcus aureus biofilms. Infect. Immun. 70, 6339–6345 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  74. Gilbert, P., Allison, D. G. & McBain, A. J. Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J. Appl. Microbiol. 92, S98–S110 (2002).
    Article Google Scholar
  75. Mah, T. F. & O'Toole, G. A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9, 34–39 (2001).
    Article CAS PubMed Google Scholar
  76. Dibdin, G. H., Assinder, S. J., Nichols, W. W. & Lambert, P. A. Mathematical model of β-lactam penetration into a biofilm of Pseudomonas aeruginosa while undergoing simultaneous inactivation by released β-lactamases. J. Antimicrob. Chemother. 38, 757–769 (1996).
    Article CAS PubMed Google Scholar
  77. Anderl, J. N., Zahller, J., Roe, F. & Stewart, P. S. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 47, 1251–1256 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  78. Walters, M. C., Roe, F., Bugnicourt, A., Franklin, M. J. & Stewart, P. S. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob. Agents Chemother. 47, 317–323 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  79. Suci, P. A. & Tyler, B. J. A method for discrimination of subpopulations of Candida albicans biofilm cells that exhibit relative levels of phenotypic resistance to chlorhexidine. J. Microbiol. Methods 53, 313–325 (2003).
    Article CAS PubMed Google Scholar
  80. Parsek, M. R. & Singh, P. K. Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57, 677–701 (2003). Discusses biofilm pathogenesis and defines some clinical criteria for classifying infections with a biofilm aetiology.
    Article CAS PubMed Google Scholar
  81. Donlan, R. M. & Costerton, J. W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167–193 (2002). An excellent, comprehensive review of medically relevant biofilms.
    Article CAS PubMed PubMed Central Google Scholar
  82. Gotz, F. Staphylococcus and biofilms. Mol. Microbiol. 43, 1367–1378 (2002). An excellent review of staphylococcal biofilms and the molecular mechanisms of adhesion and biofilm development in staphylococci.
    Article CAS PubMed Google Scholar
  83. Peters, G., Locci, R. & Pulverer, G. Microbial colonization of prosthetic devices. II. Scanning electron microscopy of naturally infected intravenous catheters. Zentralb. Bacteriol. Mikrobiol. Hyg. 173, 293–299 (1981).
    CAS Google Scholar
  84. Christensen, G. D. Simpson, W. A., Bisno, A. L. & Beachey, E. H. Phenotypic variation of Staphylococcus epidermidis slime production in vitro and in vivo. Infect. Immun. 55, 622–628 (1982).
    Google Scholar
  85. Marrie, T. J., Nelligan, J. & Costerton, J. W. A scanning and transmission electron microscopic study of and infected endocardial pacemaker lead. Circulation 66, 1339–1341 (1982). A seminal paper showing biofilm formation on a medical device.
    Article CAS PubMed Google Scholar
  86. von Eiff, C., Heilmann, C., Hermann, M. & Peters, G. Basic aspects of the pathogenesis of staphylococcal polymer-associated infections. Infection 27, S7–S10 (1999).
    Article PubMed Google Scholar
  87. Akiyama, H., Huh, W. K., Yamasaki, O., Oono, T. & Iwatsuki, K. Confocal laser scanning microscopic observation of glycocalyx production by Staphylococcus aureus in mouse skin: does S. aureus generally produce a biofilm on damaged skin? Br. J. Dermatol. 147, 879–885 (2002).
    Article CAS PubMed Google Scholar
  88. Mack, D. et al. The intercellular adhesion involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glycosaminoglycan: purification and structural analysis. J. Bacteriol. 178, 175–183 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  89. Heilmann, C., Hussain, M., Peters, G. & Gotz, F. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol. Microbiol. 24, 1013–1024 (1997).
    Article CAS PubMed Google Scholar
  90. Heilmann, C., Gerke, C., Perdreau-Remington, F. & Gotz, F. Characterization of Tn_917_ insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect. Immun. 64, 277–282 (1996).
    CAS PubMed PubMed Central Google Scholar
  91. Heilmann, C. et al. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol. Microbiol. 20, 1083–1091 (1996).
    Article CAS PubMed Google Scholar
  92. Gross, M., Cramton, S. E., Gotz, F. & Peschel, A. Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect. Immun. 69, 3423–3426 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  93. Dunne, W. M. Jr & Burd, E. M. The effects of magnesium, calcium, EDTA and pH on the in vitro adhesion of Staphylococcus epidermidis to plastic. Microbiol. Immunol. 36, 1019–1027 (1992).
    Article CAS PubMed Google Scholar
  94. Vaudaux, P. E, Lew, D. P. & Waldvogel, F. in Infections Associated with Indwelling Medical Devices. 2nd Edition (eds Bisno, A. L. & Waldvogel, F. A.) (ASM Press, Washington DC, USA, 1994).
    Google Scholar
  95. Foster, T. J. & Höök, M. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 6, 484–488 (1998).
    Article CAS PubMed Google Scholar
  96. Vaudaux, P. E. et al. Use of adhesion defective mutants of Staphylococcus aureus to define the role of specific plasma proteins in promoting adhesion to arteriovenous shunts. Infect. Immun. 63, 585–590 (1995).
    CAS PubMed PubMed Central Google Scholar
  97. Durack, D. T. Experimental bacterial endocarditis. IV. Structure and evolution of very early lesions. J. Pathol. 115, 81–89 (1975).
    Article CAS PubMed Google Scholar
  98. Höök, E. W. & Sande, M. A. Role of the vegetation in experimental Streptococcus viridans endocarditis. Infect. Immun. 10, 1433–1438 (1974).
    PubMed PubMed Central Google Scholar
  99. Marrie, T. J, Cooper, J. H. & Costerton, J. W. Ultrastructure of cardiac bacterial vegetations on native valves with emphasis on alterations in bacterial morphology following antibiotic treatment. Can. J. Cardiol. 3, 275–280 (1987).
    CAS PubMed Google Scholar
  100. Ramirez-Rhonda, C. H. Adherence of glucan-positive and glucan-negative streptococcal strains to normal and damaged heart valves. J. Clin. Invest. 62, 805–814 (1978).
    Article Google Scholar
  101. Fey, P. D. et al. Characterization of the relationship between polysaccharide intercellular adhesin and hemagglutination in Staphylococcus epidermidis. J. Infect. Dis. 179, 1561–1564 (1999).
    Article CAS PubMed Google Scholar
  102. Shiro, H. et al. Transposon mutants of Staphylococcus epidermidis deficient in elaboration of capsular polysaccharide/adhesin and slime are avirulent in a rabbit model of endocarditis. J. Infect. Dis. 169, 1042–1049 (1994).
    Article CAS PubMed Google Scholar
  103. Sullam, P. M., Bayer, A. S., Foss, W. M. & Cheung, A. L. Diminished platelet binding in vitro by Staphylococcus aureus is associated with reduced virulence in a rabbit model of infective endocarditis. Infect. Immun. 64, 4915–4921 (1996).
    CAS PubMed PubMed Central Google Scholar
  104. Kuypers, J. M. & Proctor, R. A. Reduced adherence to traumatized rat heart valves by a low-fibronectin-binding mutant of Staphylococcus aureus. Infect. Immun. 57, 2306–2312 (1989).
    CAS PubMed PubMed Central Google Scholar
  105. Moreillon, P. et al. Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect. Immun. 63, 4738–4743 (1995).
    CAS PubMed PubMed Central Google Scholar
  106. Que, Y. A. et al. Reassessing the role of Staphylococcus aureus clumping factor and fibronectin-binding protein by expression in Lactococcus lactis. Infect. Immun. 69, 6296–6302 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  107. Siboo, I. R., Cheung, A. L., Bayer, A. S. & Sullam, P. M. Clumping factor A mediates binding of Staphylococcus aureus to human platelets. Infect. Immun. 69, 3120–3127 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  108. Joly, V. et al. Value of antibiotic levels in serum and cardiac vegetations for predicting antibacterial effect of ceftriaxone in experimental Escherichia coli endocarditis. Antimicrob. Agents Chemother. 31, 1632–1639 (1987).
    Article CAS PubMed PubMed Central Google Scholar
  109. Lyczak, J. B., Cannon, C. L. & Pier, G. B. Lung infections associated with cystic fibrosis. Clin. Microbiol. Rev. 15, 194–222 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  110. Koch, C. & Hoiby, N. Pathogenesis of cystic fibrosis. Lancet 341, 1065–1069 (1993).
    Article CAS PubMed Google Scholar
  111. Govan, J. R. & Deretic, V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60, 539–574 (1996).
    CAS PubMed PubMed Central Google Scholar
  112. Costerton, J. W., Irvin, R. T. & Cheng, K. J. The role of bacterial surface structures in pathogenesis. Crit. Rev. Microbiol. 8, 303–338 (1981).
    Article CAS PubMed Google Scholar
  113. Costerton, J. W., Lam, J., Lam, K. & Chan, R. The role of the microcolony mode of growth in the pathogenesis of Pseudomonas aeruginosa infections. Rev. Infect. Dis. 5, S867–S873 (1983).
    Article PubMed Google Scholar
  114. Lam, J., Chan, R., Lam, K., & Costerton, J. W. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun. 28, 546–556 (1980). A seminal paper suggesting Pseudomonas pneumonia in cystic fibrosis is a biofilm infection.
    CAS PubMed PubMed Central Google Scholar
  115. Singh, P. K. et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407, 762–764 (2000). Presents several criteria to show that biofilm infections are present in cystic fibrosis.
    Article CAS PubMed Google Scholar
  116. Potts, S. B., Roegli, V. L. & Spock, A. Immunohistologic quantification of Pseudomonas aeruginosa in the tracheo-bronchial tree from patients with cystic fibrosis. Pediatr. Path. Lab. Med. 15, 707–721 (1995).
    Article CAS Google Scholar
  117. Mathee, K. et al. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145, 1349–1357 (1999). Links inflammatory responses of the host to the emergence of a virulent P. aeruginosa mucoid phenotype.
    Article CAS PubMed Google Scholar
  118. Suter, S., Schaad, U. B., Morgenthaler, J. J., Chevallier, I. & Schnebli, H. P. Fibronectin-cleaving activity in bronchial secretions of patients with cystic fibrosis. J. Infect. Dis. 158, 89–100 (1988).
    Article CAS PubMed Google Scholar
  119. Saiman, L. & Prince, A. Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells. J. Clin. Invest. 92, 1875–1880 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  120. Roger, P. et al. Fibronectin and α5β1 integrin mediate binding of Pseudomonas aeruginosa to repairing airway epithelium. Eur. Respir. J. 13, 1301–1309 (1999).
    CAS PubMed Google Scholar
  121. Ofek, I., Hasty, D. L. & Doyle, R. J. (eds). Bacterial Adhesion to Animal Cells and Tissues (ASM Press, Washington DC, USA, 2003).
    Book Google Scholar
  122. Smith, R. S., Harris, S. G., Phipps, R. & Iglewski, B. The Pseudomonas aeruginosa quorum-sensing molecule _N_-(3-oxododecanoyl) homoserine lactone contributes to virulence and induces inflammation in vivo. J. Bacteriol. 184, 1132–1139 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  123. Smith, R. S., Kelly, R., Iglewski, B. H. & Phipps, R. P. The Pseudomonas autoinducer _N_-(3-oxododecanoyl) homoserine lactone induces cyclooxygenase-2 and prostaglandin E2 production in human lung fibroblasts: implications for inflammation. J. Immunol. 169, 2636–2642 (2002).
    Article CAS PubMed Google Scholar
  124. Worlitzsch, D. et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Invest. 109, 317–325 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  125. Yoon, S. S. et al. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev. Cell. 3, 593–603 (2002).
    Article CAS PubMed Google Scholar
  126. Xu, K. D., Stewart, P. S., Xia, F., Huang, C. T. & McFeters, G. A. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl. Environ. Microbiol. 64, 4035–4039 (1998). Showed that biofilm cells could exhibit a wide range of physiologies from stationary phase to a highly active phase over very small distances (micrometres), due to the heterogeneity in nutrient distribution (in this case, oxygen) resulting from the mass transfer characteristics and the shape of the biofilm microcolonies.
    CAS PubMed PubMed Central Google Scholar
  127. Drenkard, E. & Ausubel, F. M. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416, 740–743 (2002).
    Article CAS PubMed Google Scholar
  128. Huang, C. T., Xu, K. D., McFeters, G. A. & Stewart, P. S. Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation. Appl. Environ. Microbiol. 64, 1526–1531 (1998).
    CAS PubMed PubMed Central Google Scholar
  129. deBeer, D. & Stoodley, P. Relation between the structure of an aerobic biofilm and mass transport phenomena. Water Sci. Tech. 32, 11–18 (1995).
    Article Google Scholar
  130. Donlan, R. M. et al. in Legionella (eds Marre, R. et al.) 406–410 (ASM Press, Washington DC, USA, 2002).
    Google Scholar
  131. Heydorn, A. et al. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146, 2395–2407 (2000).
    Article CAS PubMed Google Scholar
  132. Yang, X., Beyenal, H., Harkin, G. & Lewandowski, Z. Quantifying biofilm structure using image analysis. J. Microbiol. Methods 39, 109–119 (2000).
    Article CAS PubMed Google Scholar

Download references