Bacterial biofilms: from the Natural environment to infectious diseases (original) (raw)
References
Zobel, C. E. The effect of solid surfaces upon bacterial activity. J. Bacteriol.46, 39–56 (1943). Google Scholar
Doyle, R. (ed.). Microbial growth in biofilms, part A: developmental and molecular biological aspects. Methods Enzymol.336 (2001).
Doyle, R. (ed.) Microbial growth in biofilms, part B: special environments and physiochemical aspects. Methods Enzymol.337 (2001).
Westall, F. et al. Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precambrian Res.106, 93–116 (2001). ArticleCAS Google Scholar
Rasmussen, B. Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature405, 676–679 (2000). ArticleCASPubMed Google Scholar
Reysenbach, A. L. & Cady, S. L. Microbiology of ancient and modern hydrothermal systems Trends Microbiol.9, 79–86 (2001). ArticleCASPubMed Google Scholar
Taylor, C. D., Wirsen, C. O. & Gaill, F. Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Appl. Environ. Microbiol.65, 2253–2255 (1999). CASPubMedPubMed Central Google Scholar
Jahnke, L. L. et al. Signature lipids and stable carbon isotope analyses of octopus spring hyperthermophilic communities compared with those of aquificales representatives. Appl. Environ. Microbiol.67, 5179–5189 (2001). ArticleCASPubMedPubMed Central Google Scholar
Reysenbach, A. L., Ehringer, M. & Hershberger, K. Microbial diversity at 83 degrees C in Calcite Springs, Yellowstone National Park: another environment where the Aquificales and 'Korarchaeota' coexist. Extremophiles4, 61–67 (2000). CASPubMed Google Scholar
Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol.56, 187–209 (2002). ArticleCASPubMed Google Scholar
Baty, A. M., Eastburn, C. C., Techkarnjanaruk, S., Goodman, A. E. & Geesey, G. G. Spatial and temporal variations in chitinolytic gene expression and bacterial biomass production during chitin degradation. Appl. Environ. Microbiol.66, 3574–3585 (2000). Discovered that there could be a 'division of labour' in bacterial biofilm populations such that a subset that remained attached could degrade the chitin substratum and provide nutrients for a detached, planktonic subset. ArticleCASPubMedPubMed Central Google Scholar
Edwards, K. J., Bond, P. L., Gihring, T. M. & Banfield, J. F. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science.287, 1731–1732 (2000). Article Google Scholar
Klausen, M. et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol.48, 1511–1524 (2003). ArticleCASPubMed Google Scholar
Stoodley, P., Dodds, I., Boyle, J. D. & Lappin-Scott, H. M. Influence of hydrodynamics and nutrients on biofilm structure. J. Appl. Microbiol.85, 19S–28S (1999). Article Google Scholar
Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol.184, 1140–1154 (2002). Linked structural development with protein expression inPseudomonasbiofilms thereby demonstrating that biofilms can have regulated 'life-cycles'. ArticleCASPubMedPubMed Central Google Scholar
Ghigo, J.-M. Are there biofilm-specific physiological pathways beyond a reasonable doubt? Res. Microbiol.154, 1–8 (2003). ArticleCASPubMed Google Scholar
van Loosdrecht, M. C., Heijnen, J. J., Eberl, H., Kreft, J. & Picioreanu, C. Mathematical modelling of biofilm structures. Antonie Van Leeuwenhoek.81, 245–256 (2002). ArticleCASPubMed Google Scholar
Lawrence, J. R., Korber, D. R., Hoyle, B. D., Costerton, J. W. & Caldwell, D. E. Optical sectioning of microbial biofilms. J. Bacteriol.173, 6558–6567 (1991). ArticleCASPubMedPubMed Central Google Scholar
deBeer, D., Stoodley, P., Roe, F. & Lewandowski, Z. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol. Bioeng.43, 1131–1138 (1994). ArticleCAS Google Scholar
Stoodley, P., de Beer, D. & Lewandowski, Z. Liquid flow in biofilm systems. Appl. Environ. Microbiol.60, 2711–2716 (1994). CASPubMedPubMed Central Google Scholar
Pratt, L. A. & Kolter, R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol.30, 285–293 (1998). ArticleCASPubMed Google Scholar
Reisner, A., Haagensen, J. A., Schembri, M. A., Zechner, E. L. & Molin, S. Development and maturation of Escherichia coli K-12 biofilms. Mol. Microbiol.48, 933–946 (2003). ArticleCASPubMed Google Scholar
Tremoulet, F., Duche, O., Namane, A., Martinie, B. & Labadie, J. C. A proteomic study of Escherichia coli O157:H7 NCTC 12900 cultivated in biofilm or in planktonic growth mode. FEMS Microbiol. Lett.215, 7–14 (2002). ArticleCASPubMed Google Scholar
Kaiser, D. Coupling cell movement to multicellular development in myxobacteria. Nature Rev. Microbiol.1, 45–54 (2003) ArticleCAS Google Scholar
Fux, C. A., Stoodley, P., Hall-Stoodley, L. & Costerton, W. J. Bacterial biofilms—a diagnostic and therapeutic challenge. Expert Rev. Anti-Infective Ther.1, 667–683 (2003). Article Google Scholar
Hall-Stoodley, L., Keevil, C. W. & Lappin-Scott, H. M. Mycobacterium fortuitum and Mycobacterium chelonae form biofilms under high and low nutrient conditions. J. Appl. Microbiol.85, S60–S69 (1999). Article Google Scholar
Bracco, E. et al. Cell signaling and adhesion in phagocytosis and early development of Dictyostelium. Int. J. Dev. Biol.4, 733–742 (2000). Google Scholar
Hall-Stoodley, L. & Stoodley, P. Development regulation of microbial biofilms. Curr. Opin. Biotech.13, 228–233 (2002). ArticleCASPubMed Google Scholar
Kjelleberg, S. & Molin, S. Is there a role for quorum sensing signals in bacterial biofilms? Curr. Opin. Microbiol.5, 254–258 (2002). Discusses the relative contribution of various environmental factors (such as flow and nutrients) and genetic factors (cell signalling) on biofilm structure. ArticleCASPubMed Google Scholar
Hunt, S. M., Hamilton, M. A., Sears, J. T., Harkin, G. & Reno, J. A computer investigation of chemically mediated detachment in bacterial biofilms. Microbiology149, 1155–1163 (2003). ArticleCASPubMed Google Scholar
Caiazza, N. C. & O'Toole, G. A. Alpha-toxin is required for biofilm formation by Staphylococcus aureus. J. Bacteriol.185, 3214–3217 (2003). ArticleCASPubMedPubMed Central Google Scholar
Cramton, S. E., Gerke, C., Schnell, N. F., Nichols, W. W. & Cotz, F. The intercellular adhesion (ica) locas is present in Staphylococcus aureus and is required for biofilm formation. Infect. Immun.67, 5427–5433 (1999). CASPubMedPubMed Central Google Scholar
Hamon, M. A. & Lazazzera, B. A. The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol. Microbiol.42, 1199–1209 (2001). ArticleCASPubMed Google Scholar
Froeliger, E. H. & Fives-Taylor, P. Streptococcus parasanguis fimbria-associated adhesion. _Fap_1 is required for biofilm formation. Infect. Immun.69, 2512–2519 (2001). ArticleCASPubMedPubMed Central Google Scholar
Gav'n, R. et al. Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation. Mol. Microbiol.43, 383–397 (2002). Article Google Scholar
Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C. & Mattick, J. S. Extracellular DNA required for bacterial biofilm formation. Science295, 1487 (2002). ArticleCASPubMed Google Scholar
Valle, J. et al. SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol. Microbiol.48, 1075–1087 (2003). ArticleCASPubMed Google Scholar
Davies, D. G. et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science280, 295–298 (1998). Demonstrated that cell–cell communication molecules, associated with the production of virulence factors, have a role in the structure ofPseudomonasbiofilms, opening the concept that biofilm structure was genetically regulated. ArticleCASPubMed Google Scholar
Heydorn, A. et al. Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl. Environ. Microbiol.68, 2008–2017 (2002). ArticleCASPubMedPubMed Central Google Scholar
Purevdorj, B., Costerton, J. W. & Stoodley, P. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol.68, 4457–4464 (2002). Demonstrated that environmental factors (in this case, flow) can 'override' cell–cell communications as a principal determinant of biofilm structure, illustrating that biofilm development is a multifactorial process influenced by both environmental and genetic factors. ArticleCASPubMedPubMed Central Google Scholar
Stoodley, P., Jørgensen, F., Williams, P. & Lappin-Scott, H. M. in Biofilms: The Good, the Bad, and the Ugly (eds Bayston, R., Brading, M., Gilbert, P., Walker, J. & Wimpenny, J. W. T.) 323–330 (BioLine, Cardiff, UK, 1999) Google Scholar
Stoodley, P., Cargo, R., Rupp, C. J., Wilson, S., & Klapper, I. Biofilm mechanics and shear-induced deformation and detachment. J. Industrial Microbiol. Biotech.29, 361–368 (2002). ArticleCAS Google Scholar
Boyd, A. & Chakrabarty, A. M. Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl. Environ. Microbiol.60, 2355–2359 (1994). CASPubMedPubMed Central Google Scholar
Kaplan, J. B., Ragunath, C., Ramasubbu, N. & Fine, D. H. Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous β-hexosaminidase activity. J. Bacteriol.185, 4693–4698 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lee, S. F., Li, Y. H. & Bowden, G. H. Detachment of Streptococcus mutans biofilm cells by an endogenous enzymatic activity. Infect. Immun.64, 1035–1038 (1996). CASPubMedPubMed Central Google Scholar
Piriou, P., Dukan, S., Levi, Y. & Jarrige, P. A. Prevention of bacterial growth in drinking water distribution systems. Water Sci. Technol.35, 283–287 (1997). ArticleCAS Google Scholar
Zottola, E. A. & Sasahara, K. C. Microbial biofilms in the food industry should they be a concern? Int. J. Food Microbiol.23, 125–148 (1994). ArticleCASPubMed Google Scholar
Pankhurst, C. L., Johnson, N. W. & Woods, R. G. Microbial contamination of dental unit waterlines: the scientific argument. Int. Dent. J.48, 359–368 (1998). ArticleCASPubMed Google Scholar
Raad, I. I. Catheter-related septicemia: risk reduction. Infect. Med.13, 807–812, 815–816, 823 (1996). Google Scholar
Purevdorj, B. & Stoodley, P. in Microbial Biofilms. (eds Ghannoum, M. A. and O'Toole, G.) (ASM Press, Washington DC, USA, in the press).
Spoering, A. L. & Lewis, K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol.183, 6746–6751 (2001). Links the antibiotic resistance of biofilms to the stationary phase physiology of cells within the biofilms and the presence of a small phenotypically distinct 'persister' population. ArticleCASPubMedPubMed Central Google Scholar
Hanlon, G. W., Denyer, S. P., Olliff, C. J. & Ibrahim, L. J. Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol.67, 2746–2753 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kaplan, J. B., Meyenhofer, M. F. & Fine, D. H. Biofilm growth and detachment of Actinobacillus actinomycetemcomitans. J. Bacteriol.185, 1399–1404 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kaplan, J. B. & Fine, D. H. Biofilm dispersal of Neisseria subflava and other phylogenetically diverse oral bacteria. Appl. Environ. Microbiol.68, 4943–4950 (2002). ArticleCASPubMedPubMed Central Google Scholar
Stoodley, P. et al. Growth and detachment of cell clusters from mature mixed species biofilms. Appl. Environ. Microbiol.67, 5608–5613 (2001). ArticleCASPubMedPubMed Central Google Scholar
Mattick, J. S. Type IV pili and twitching motility. Annu. Rev. Microbiol.56, 289–314 (2002). ArticleCASPubMed Google Scholar
Stoodley, P., Lewandowski, Z., Boyle, J. D. & Lappin-Scott, H. M. The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. Environ. Microbiol.1, 447–457 (1999). ArticleCASPubMed Google Scholar
Inglis, T. J. J. Evidence for dynamic phenomena in residual trachael tube biofilm. Br. J. Anaesth.70, 22–24 (1993). ArticleCASPubMed Google Scholar
Stewart, P. S. & Costerton, J. W. Antibiotic resistance of bacteria in biofilms. Lancet.358, 135–138 (2001). ArticleCASPubMed Google Scholar
Klapper, I., Rupp, C. J., Cargo, R., Purevdorj, B. & Stoodley, P. A viscoelastic fluid description of bacterial biofilm material properties. Biotech. Bioeng.80, 289–296 (2002). ArticleCAS Google Scholar
Korstgens, V., Flemming, H. C., Wingender, J. & Borchard, W. Uniaxial compression measurement device for investigation of the mechanical stability of biofilms. J. Microbiol. Meth.46, 9–17 (2001). ArticleCAS Google Scholar
Towler, B. W., Rupp, C. J., Cunningham, A. B. & Stoodley, P. Viscoelastic properties of a mixed culture biofilm from rheometer creep analysis. Biofouling19, 279–285 (2003). ArticlePubMed Google Scholar
Vinogradov, A. M., Winston., M., Rupp., C. J. & Stoodley, P. Rheology of biofilms formed from the dental plaque pathogen Streptococcus mutans. Biofilms (in the press).
Espeland, E. M. & Wetzel, R. G. Complexation, stabilization, and UV photolysis of extracellular and surface-bound glucosidase and alkaline phosphatase: implications for biofilm microbiota. Microb. Ecol.42, 572–585 (2001). ArticleCASPubMed Google Scholar
Teitzel, G. M. & Parsek, M. R. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol.69, 2313–2320 (2003). ArticleCASPubMedPubMed Central Google Scholar
McNeill, K. & Hamilton, I. R. Acid tolerance response of biofilm cells of Streptococcus mutans. FEMS Microbiol. Lett.221, 25–30 (2003). ArticleCASPubMed Google Scholar
Le Magrex-Debar, E., Lemoine, J., Gelle, M. P., Jacquelin, L. F. & Choisy, C. Evaluation of biohazards in dehydrated biofilms on foodstuff packaging. Int. J. Food Microbiol.55, 239–234 (2000). ArticleCASPubMed Google Scholar
Leid, J. G., Shirtliff, M. E., Costerton, J. W. & Stoodley, P. Human leukocytes adhere, penetrate, and respond to Staphylococcus aureus biofilms. Infect. Immun.70, 6339–6345 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gilbert, P., Allison, D. G. & McBain, A. J. Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J. Appl. Microbiol.92, S98–S110 (2002). Article Google Scholar
Mah, T. F. & O'Toole, G. A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol.9, 34–39 (2001). ArticleCASPubMed Google Scholar
Dibdin, G. H., Assinder, S. J., Nichols, W. W. & Lambert, P. A. Mathematical model of β-lactam penetration into a biofilm of Pseudomonas aeruginosa while undergoing simultaneous inactivation by released β-lactamases. J. Antimicrob. Chemother.38, 757–769 (1996). ArticleCASPubMed Google Scholar
Anderl, J. N., Zahller, J., Roe, F. & Stewart, P. S. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother.47, 1251–1256 (2003). ArticleCASPubMedPubMed Central Google Scholar
Walters, M. C., Roe, F., Bugnicourt, A., Franklin, M. J. & Stewart, P. S. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob. Agents Chemother.47, 317–323 (2003). ArticleCASPubMedPubMed Central Google Scholar
Suci, P. A. & Tyler, B. J. A method for discrimination of subpopulations of Candida albicans biofilm cells that exhibit relative levels of phenotypic resistance to chlorhexidine. J. Microbiol. Methods53, 313–325 (2003). ArticleCASPubMed Google Scholar
Parsek, M. R. & Singh, P. K. Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol.57, 677–701 (2003). Discusses biofilm pathogenesis and defines some clinical criteria for classifying infections with a biofilm aetiology. ArticleCASPubMed Google Scholar
Donlan, R. M. & Costerton, J. W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev.15, 167–193 (2002). An excellent, comprehensive review of medically relevant biofilms. ArticleCASPubMedPubMed Central Google Scholar
Gotz, F. Staphylococcus and biofilms. Mol. Microbiol.43, 1367–1378 (2002). An excellent review of staphylococcal biofilms and the molecular mechanisms of adhesion and biofilm development in staphylococci. ArticleCASPubMed Google Scholar
Peters, G., Locci, R. & Pulverer, G. Microbial colonization of prosthetic devices. II. Scanning electron microscopy of naturally infected intravenous catheters. Zentralb. Bacteriol. Mikrobiol. Hyg.173, 293–299 (1981). CAS Google Scholar
Christensen, G. D. Simpson, W. A., Bisno, A. L. & Beachey, E. H. Phenotypic variation of Staphylococcus epidermidis slime production in vitro and in vivo. Infect. Immun.55, 622–628 (1982). Google Scholar
Marrie, T. J., Nelligan, J. & Costerton, J. W. A scanning and transmission electron microscopic study of and infected endocardial pacemaker lead. Circulation66, 1339–1341 (1982). A seminal paper showing biofilm formation on a medical device. ArticleCASPubMed Google Scholar
von Eiff, C., Heilmann, C., Hermann, M. & Peters, G. Basic aspects of the pathogenesis of staphylococcal polymer-associated infections. Infection27, S7–S10 (1999). ArticlePubMed Google Scholar
Akiyama, H., Huh, W. K., Yamasaki, O., Oono, T. & Iwatsuki, K. Confocal laser scanning microscopic observation of glycocalyx production by Staphylococcus aureus in mouse skin: does S. aureus generally produce a biofilm on damaged skin? Br. J. Dermatol.147, 879–885 (2002). ArticleCASPubMed Google Scholar
Mack, D. et al. The intercellular adhesion involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glycosaminoglycan: purification and structural analysis. J. Bacteriol.178, 175–183 (1996). ArticleCASPubMedPubMed Central Google Scholar
Heilmann, C., Hussain, M., Peters, G. & Gotz, F. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol. Microbiol.24, 1013–1024 (1997). ArticleCASPubMed Google Scholar
Heilmann, C., Gerke, C., Perdreau-Remington, F. & Gotz, F. Characterization of Tn_917_ insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect. Immun.64, 277–282 (1996). CASPubMedPubMed Central Google Scholar
Heilmann, C. et al. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol. Microbiol.20, 1083–1091 (1996). ArticleCASPubMed Google Scholar
Gross, M., Cramton, S. E., Gotz, F. & Peschel, A. Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect. Immun.69, 3423–3426 (2001). ArticleCASPubMedPubMed Central Google Scholar
Dunne, W. M. Jr & Burd, E. M. The effects of magnesium, calcium, EDTA and pH on the in vitro adhesion of Staphylococcus epidermidis to plastic. Microbiol. Immunol.36, 1019–1027 (1992). ArticleCASPubMed Google Scholar
Vaudaux, P. E, Lew, D. P. & Waldvogel, F. in Infections Associated with Indwelling Medical Devices. 2nd Edition (eds Bisno, A. L. & Waldvogel, F. A.) (ASM Press, Washington DC, USA, 1994). Google Scholar
Foster, T. J. & Höök, M. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol.6, 484–488 (1998). ArticleCASPubMed Google Scholar
Vaudaux, P. E. et al. Use of adhesion defective mutants of Staphylococcus aureus to define the role of specific plasma proteins in promoting adhesion to arteriovenous shunts. Infect. Immun.63, 585–590 (1995). CASPubMedPubMed Central Google Scholar
Durack, D. T. Experimental bacterial endocarditis. IV. Structure and evolution of very early lesions. J. Pathol.115, 81–89 (1975). ArticleCASPubMed Google Scholar
Höök, E. W. & Sande, M. A. Role of the vegetation in experimental Streptococcus viridans endocarditis. Infect. Immun.10, 1433–1438 (1974). PubMedPubMed Central Google Scholar
Marrie, T. J, Cooper, J. H. & Costerton, J. W. Ultrastructure of cardiac bacterial vegetations on native valves with emphasis on alterations in bacterial morphology following antibiotic treatment. Can. J. Cardiol.3, 275–280 (1987). CASPubMed Google Scholar
Ramirez-Rhonda, C. H. Adherence of glucan-positive and glucan-negative streptococcal strains to normal and damaged heart valves. J. Clin. Invest.62, 805–814 (1978). Article Google Scholar
Fey, P. D. et al. Characterization of the relationship between polysaccharide intercellular adhesin and hemagglutination in Staphylococcus epidermidis. J. Infect. Dis.179, 1561–1564 (1999). ArticleCASPubMed Google Scholar
Shiro, H. et al. Transposon mutants of Staphylococcus epidermidis deficient in elaboration of capsular polysaccharide/adhesin and slime are avirulent in a rabbit model of endocarditis. J. Infect. Dis.169, 1042–1049 (1994). ArticleCASPubMed Google Scholar
Sullam, P. M., Bayer, A. S., Foss, W. M. & Cheung, A. L. Diminished platelet binding in vitro by Staphylococcus aureus is associated with reduced virulence in a rabbit model of infective endocarditis. Infect. Immun.64, 4915–4921 (1996). CASPubMedPubMed Central Google Scholar
Kuypers, J. M. & Proctor, R. A. Reduced adherence to traumatized rat heart valves by a low-fibronectin-binding mutant of Staphylococcus aureus. Infect. Immun.57, 2306–2312 (1989). CASPubMedPubMed Central Google Scholar
Moreillon, P. et al. Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect. Immun.63, 4738–4743 (1995). CASPubMedPubMed Central Google Scholar
Que, Y. A. et al. Reassessing the role of Staphylococcus aureus clumping factor and fibronectin-binding protein by expression in Lactococcus lactis. Infect. Immun.69, 6296–6302 (2001). ArticleCASPubMedPubMed Central Google Scholar
Siboo, I. R., Cheung, A. L., Bayer, A. S. & Sullam, P. M. Clumping factor A mediates binding of Staphylococcus aureus to human platelets. Infect. Immun.69, 3120–3127 (2001). ArticleCASPubMedPubMed Central Google Scholar
Joly, V. et al. Value of antibiotic levels in serum and cardiac vegetations for predicting antibacterial effect of ceftriaxone in experimental Escherichia coli endocarditis. Antimicrob. Agents Chemother.31, 1632–1639 (1987). ArticleCASPubMedPubMed Central Google Scholar
Govan, J. R. & Deretic, V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev.60, 539–574 (1996). CASPubMedPubMed Central Google Scholar
Costerton, J. W., Irvin, R. T. & Cheng, K. J. The role of bacterial surface structures in pathogenesis. Crit. Rev. Microbiol.8, 303–338 (1981). ArticleCASPubMed Google Scholar
Costerton, J. W., Lam, J., Lam, K. & Chan, R. The role of the microcolony mode of growth in the pathogenesis of Pseudomonas aeruginosa infections. Rev. Infect. Dis.5, S867–S873 (1983). ArticlePubMed Google Scholar
Lam, J., Chan, R., Lam, K., & Costerton, J. W. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun.28, 546–556 (1980). A seminal paper suggestingPseudomonaspneumonia in cystic fibrosis is a biofilm infection. CASPubMedPubMed Central Google Scholar
Singh, P. K. et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature407, 762–764 (2000). Presents several criteria to show that biofilm infections are present in cystic fibrosis. ArticleCASPubMed Google Scholar
Potts, S. B., Roegli, V. L. & Spock, A. Immunohistologic quantification of Pseudomonas aeruginosa in the tracheo-bronchial tree from patients with cystic fibrosis. Pediatr. Path. Lab. Med.15, 707–721 (1995). ArticleCAS Google Scholar
Mathee, K. et al. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology145, 1349–1357 (1999). Links inflammatory responses of the host to the emergence of a virulentP. aeruginosamucoid phenotype. ArticleCASPubMed Google Scholar
Suter, S., Schaad, U. B., Morgenthaler, J. J., Chevallier, I. & Schnebli, H. P. Fibronectin-cleaving activity in bronchial secretions of patients with cystic fibrosis. J. Infect. Dis.158, 89–100 (1988). ArticleCASPubMed Google Scholar
Saiman, L. & Prince, A. Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells. J. Clin. Invest.92, 1875–1880 (1993). ArticleCASPubMedPubMed Central Google Scholar
Roger, P. et al. Fibronectin and α5β1 integrin mediate binding of Pseudomonas aeruginosa to repairing airway epithelium. Eur. Respir. J.13, 1301–1309 (1999). CASPubMed Google Scholar
Ofek, I., Hasty, D. L. & Doyle, R. J. (eds). Bacterial Adhesion to Animal Cells and Tissues (ASM Press, Washington DC, USA, 2003). Book Google Scholar
Smith, R. S., Harris, S. G., Phipps, R. & Iglewski, B. The Pseudomonas aeruginosa quorum-sensing molecule _N_-(3-oxododecanoyl) homoserine lactone contributes to virulence and induces inflammation in vivo. J. Bacteriol.184, 1132–1139 (2002). ArticleCASPubMedPubMed Central Google Scholar
Smith, R. S., Kelly, R., Iglewski, B. H. & Phipps, R. P. The Pseudomonas autoinducer _N_-(3-oxododecanoyl) homoserine lactone induces cyclooxygenase-2 and prostaglandin E2 production in human lung fibroblasts: implications for inflammation. J. Immunol.169, 2636–2642 (2002). ArticleCASPubMed Google Scholar
Worlitzsch, D. et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Invest.109, 317–325 (2002). ArticleCASPubMedPubMed Central Google Scholar
Yoon, S. S. et al. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev. Cell.3, 593–603 (2002). ArticleCASPubMed Google Scholar
Xu, K. D., Stewart, P. S., Xia, F., Huang, C. T. & McFeters, G. A. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl. Environ. Microbiol.64, 4035–4039 (1998). Showed that biofilm cells could exhibit a wide range of physiologies from stationary phase to a highly active phase over very small distances (micrometres), due to the heterogeneity in nutrient distribution (in this case, oxygen) resulting from the mass transfer characteristics and the shape of the biofilm microcolonies. CASPubMedPubMed Central Google Scholar
Drenkard, E. & Ausubel, F. M. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature416, 740–743 (2002). ArticleCASPubMed Google Scholar
Huang, C. T., Xu, K. D., McFeters, G. A. & Stewart, P. S. Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation. Appl. Environ. Microbiol.64, 1526–1531 (1998). CASPubMedPubMed Central Google Scholar
deBeer, D. & Stoodley, P. Relation between the structure of an aerobic biofilm and mass transport phenomena. Water Sci. Tech.32, 11–18 (1995). Article Google Scholar
Donlan, R. M. et al. in Legionella (eds Marre, R. et al.) 406–410 (ASM Press, Washington DC, USA, 2002). Google Scholar
Heydorn, A. et al. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology146, 2395–2407 (2000). ArticleCASPubMed Google Scholar
Yang, X., Beyenal, H., Harkin, G. & Lewandowski, Z. Quantifying biofilm structure using image analysis. J. Microbiol. Methods39, 109–119 (2000). ArticleCASPubMed Google Scholar