Neocortical cell classes are flexible entities (original) (raw)
Mountcastle, V. B. Perceptual Neuroscience: The Cerebral Cortex (Harvard Univ. Press, Cambridge, Massachusetts, 1998). A monograph on the cellular bases of dynamic cortical functions and neuronal mechanisms leading to perception, written by the pioneer in the discovery of the columnar organization of the neocortex. Google Scholar
Evarts, E. V. Temporal patterns of discharge of pyramidal tract neurons during sleep and waking. J. Neurophysiol.27, 152–171 (1964). The first study in which extracellularly recorded pyramidal tract neurons were identified by antidromic invasion in chronically implanted monkeys. ArticleCASPubMed Google Scholar
Steriade, M., Deschênes, M. & Oakson, G. Inhibitory processes and interneuronal apparatus in motor cortex during sleep and waking. I. Background firing and synaptic responsiveness of pyramidal tract neurons and interneurons. J. Neurophysiol.37, 1065–1092 (1974). ArticleCASPubMed Google Scholar
Steriade, M., Timofeev, I. & Grenier, F. Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol.85, 1969–1985 (2001). The first intracellular study of four cortical neuronal types during the natural waking–sleep cycle, which analysed state-related changes in membrane potential, input resistance and incidence of various cell classes. ArticleCASPubMed Google Scholar
Llinás, R. R. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science242, 1654–1664 (1988). A visionary review article by a pioneer ofin vitroinvestigations on intrinsic neuronal properties in mammals, which changed our view of cellular operations in different brain structures. ArticlePubMed Google Scholar
Connors, B. W. & Gutnick, M. J. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci.13, 99–104 (1990). ArticleCASPubMed Google Scholar
Gray, C. M. & McCormick, D. A. Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science274, 109–113 (1996). ArticleCASPubMed Google Scholar
Steriade, M., Amzica, F. & Contreras, D. Synchronization of fast (30–40 Hz) spontaneous cortical rhythms during brain activation. J. Neurosci.16, 392–417 (1996). ArticleCASPubMed Google Scholar
Steriade, M., Timofeev, I., Dürmüller, N. & Grenier, F. Dynamic properties of corticothalamic neurons and local cortical interneurons generating fast rhythmic (30-40 Hz) spike bursts. J. Neurophysiol.79, 483–490 (1998). ArticleCASPubMed Google Scholar
Nowak, L. G., Azouz, R., Sanchez-Vives, M. V., Gray, C. M. & McCormick, D. A. Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. J. Neurophysiol.89, 1541–1566 (2003). ArticlePubMed Google Scholar
Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science287, 273–278 (2000). ArticleCASPubMed Google Scholar
Contreras, D. & Palmer, L. Response to contrast of electrophysiologically defined cell classes in primary visual cortex. J. Neurosci.23, 6936–6945 (2003). ArticleCASPubMed Google Scholar
Jones, E. G. In Information Processing in the Somatosensory System (eds Franzen, O. & Westman, J.) 95–107 (Macmillan, London, 1991). Book Google Scholar
Somogyi, P., Tamás, G., Lujan, R. & Buhl, E. H. Salient features of synaptic organisation in the cerebral cortex. Brain Res. Rev.26, 113–135 (1998). ArticleCASPubMed Google Scholar
Cauli, B. et al. Molecular and physiological diversity of cortical nonpyramidal cells. J. Neurosci.17, 3894–3906 (1997). ArticleCASPubMed Google Scholar
Gonchar, Y. & Burkhalter, A. Three distinct families of GABAergic neurons in rat visual cortex. Cereb. Cortex7, 347–358 (1997). ArticleCASPubMed Google Scholar
Kawaguchi, Y. Distinct firing patterns of neuronal subtypes in cortical synchronized activities. J. Neurosci.21, 7261–7272 (2001). ArticleCASPubMed Google Scholar
Matsumara, M., Cope, T. & Fetz, E. E. Sustained excitatory synaptic input to motor cortex neurons in awake animals revealed by intracellular recording of membrane potentials. Exp. Brain Res.70, 463–469 (1988). Google Scholar
Baranyi, A., Szente, M. B. & Woody, C. D. Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures. J. Neurophysiol.69, 1865–1879 (1993). ArticleCASPubMed Google Scholar
Kisvárday, Z. F., Beaulieu, C. & Eysel, U. T. Network of GABAergic large basket cells in the visual cortex (area 18): implication for lateral disinhibition. J. Comp. Neurol.327, 398–415 (1993). ArticlePubMed Google Scholar
Liu, X. B., Warren, R. A. & Jones, E. G. Synaptic distribution of afferents from reticular nucleus in ventroposterior nucleus of cat thalamus. J. Comp. Neurol.352, 187–202 (1995). ArticleCASPubMed Google Scholar
Steriade, M., Deschênes, M., Domich, L. & Mulle, C. Abolition of spindle oscillation in thalamic neurons disconnected from nucleus reticularis thalami. J. Neurophysiol.54, 1473–1497 (1985). ArticleCASPubMed Google Scholar
Steriade, M., McCormick, D. A. & Sejnowski, T. J. Thalamocortical oscillation in the sleeping and aroused brain. Science262, 679–685 (1993). ArticleCASPubMed Google Scholar
Timofeev, I., Grenier, F. & Steriade, M. Disfacilitation and active inhibition in the neocortex during the natural sleep–wake cycle. Proc. Natl Acad. Sci. USA98, 1924–1929 (2001). ArticleCASPubMed Google Scholar
Paré, D., Shink, E., Gaudreau, H., Destexhe, A. & Lang, E. J. Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo. J. Neurophysiol.79, 1450–1460 (1998). The first study in which the same neuronal type was recorded during active states of the cortical networkin vivoand after suppression of background synaptic activity. ArticlePubMed Google Scholar
Thomson, A. M., West, D. C., Hahn, J. & Deuchars, J. Single axon IPSPs elicited in pyramidal cells by three classes of interneurons in slices of rat neocortex. J. Physiol. (Lond.)496, 81–102 (1996). An importantin vitrostudy showing that a slight increase in slice thickness leads to a more than fourfold increase in synaptic connectivity, and that inhibitory interneurons show a variety of firing patterns (classical FS, but also RS and burst firing). ArticleCAS Google Scholar
Connors, B. W. & Amitai, Y. In The Cortical Neuron (eds Gutnick, M. J. & Mody, I.) 123–140 (Oxford Univ. Press, New York, 1995). Book Google Scholar
Steriade, M., Nuñez, A. & Amzica, F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci.13, 3252–3265 (1993). ArticleCASPubMed Google Scholar
Chen, W., Zhang, J. J., Hu, G. Y. & Wu, C. P. Electrophysiological and morphological properties of pyramidal and non-pyramidal neurons in the cat motor cortex in vitro. Neuroscience73, 39–55 (1996). ArticleCASPubMed Google Scholar
Steriade, M. Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Cereb. Cortex7, 583–604 (1997). ArticleCASPubMed Google Scholar
Traub, R. D., Buhl, E. H., Glovell, T. & Whittington, M. A. Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance and blocking BK channels. J. Neurophysiol.89, 909–921 (2003). An important modelling study that predicted the mechanisms of the transition from RS to FRB and to FS firing patterns as a function of membrane potential. ArticleCASPubMed Google Scholar
Steriade, M., Curró Dossi, R. & Contreras, D. Electrophysiological properties of intralaminar thalamocortical cells discharging rhythmic (∼40 Hz) spike-bursts at ∼1000 Hz during waking and rapid eye movement sleep. Neuroscience56, 1–9 (1993). ArticleCASPubMed Google Scholar
Glenn, L. L. & Steriade, M. Discharge rate and excitability of cortically projecting intralaminar thalamic neurons during waking and sleep states. J. Neurosci.2, 1287–1404 (1982). Article Google Scholar
Steriade, M. & Llinás, R. R. The functional states of the thalamus and the associated neuronal interplay. Physiol. Rev.68, 649–672 (1988). ArticleCASPubMed Google Scholar
Rudy, B. & McBain, C. J. Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci.24, 517–526 (2001). ArticleCASPubMed Google Scholar
Chow, A. et al. K+ channel expression distinguishes subpopulations of parvalbumin- and somatostatin-containing neocortical interneurons. J. Neurosci.19, 9332–9345 (1999). ArticleCASPubMed Google Scholar
Nishimura, Y. et al. Ionic mechanisms underlying burst firing of layer III sensori-motor cortical neurons of the cat: an in vitro slice study. J. Neurophysiol.86, 771–781 (2001). ArticleCASPubMed Google Scholar
Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T. J. & Steriade, M. Origin of slow oscillations in deafferented cortical slabs. Cereb. Cortex10, 1185–1199 (2000). ArticleCASPubMed Google Scholar
Steriade, M., Amzica, F. & Nuñez, A. Cholinergic and noradrenergic modulation of the slow (∼0.3 Hz) oscillation in neocortical cells. J. Neurophysiol.70, 1385–1400 (1993). ArticleCASPubMed Google Scholar
Steriade, M. Neuronal Substrates of Sleep and Epilepsy (Cambridge Univ. Press, 2003). Book Google Scholar
Thomson, A. Activity-dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro. J. Physiol. (Lond.)502, 131–147 (1997). ArticleCAS Google Scholar
Steriade, M. Cortical long-axoned cells and putative interneurons during the sleep–waking cycle. Behav. Brain Sci.3, 465–514 (1978). Article Google Scholar
Steriade, M. The Intact and Sliced Brain (MIT Press, Cambridge, Massachusetts, 2001). Google Scholar
Contreras, D. & Steriade, M. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J. Neurosci.15, 604–622 (1995). The first study using simultaneous intracellular recordings from cortical and thalamic neuronsin vivo. ArticleCASPubMed Google Scholar
Steriade, M., Timofeev, I., Grenier, F. & Dürmüller, N. Role of thalamic and cortical neurons in augmenting responses: dual intracellular recordings in vivo. J. Neurosci.18, 6425–6443 (1998). ArticleCASPubMed Google Scholar
Timofeev, I. et al. Short- and medium-term plasticity associated with augmenting responses in cortical slabs and spindles in intact cortex of cats in vivo. J. Physiol. (Lond.)542, 583–598 (2002). ArticleCAS Google Scholar
Steriade, M. The corticothalamic system in sleep. Front. Bioscience8, 878–899 (2003). Article Google Scholar
Mölle, M., Marshall, L., Gais, S. & Born, J. Grouping of spindle activity during the slow oscillations in human non-REM sleep. J. Neurosci.22, 10941–10947 (2002). This study during natural human sleep corroborated the concept derived from experimental data which postulated the coalescence of slow oscillation and spindles, as well as fast rhythms. ArticlePubMed Google Scholar
Kang, Y. & Kayano, F. Electrophysiological and morphological characteristics of layer VI pyramidal cells in the cat motor cortex. J. Neurophysiol.72, 578–591 (1994). ArticleCASPubMed Google Scholar
Jones, E. G. The Thalamus (Plenum, New York, 1985). A definitive monograph of nuclear systematization by a pioneer of modern studies on the thalamic gates to the cerebral cortex. Book Google Scholar
Jones, E. G. The thalamic matrix and thalamocortical synchrony. Trends Neurosci.24, 595–601 (2001). ArticleCASPubMed Google Scholar
Golshani, P., Liu, X. B. & Jones, E. G. Differences in quantal amplitude reflect GluR4-subunit number at corticothalamic synapses on two populations of thalamic neurons. Proc. Natl Acad. Sci. USA98, 4172–4177 (2001). Anin vitrostudy that explained the differential effects of cortical volleys on thalamic reticular neurons (excitation) and on thalamocortical neurons (inhibition) during highly synchronized states on the basis of different densities of glutamate receptor subtypes in these two thalamic cell types. ArticleCASPubMed Google Scholar
Jones, E. G. Thalamic circuitry and thalamocortical synchrony. Phil. Trans. R. Soc. Lond. B357, 1659–1673 (2002). Article Google Scholar
Steriade, M. Corticothalamic resonance, states of vigilance, and mentation. Neuroscience101, 243–276 (2000). ArticleCASPubMed Google Scholar
Contreras, D., Destexhe, A., Sejnowski, T. J. & Steriade, M. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science274, 771–774 (1996). ArticleCASPubMed Google Scholar
Contreras, D., Destexhe, A., Sejnowski, T. J. & Steriade, M. Spatiotemporal patterns of spindle oscillations in cortex and thalamus. J. Neurosci.17, 1179–1196 (1997). ArticleCASPubMed Google Scholar
Kato, N. Cortico-thalamo-cortical projection between visual cortices. Brain Res.509, 150–152 (1990). ArticleCASPubMed Google Scholar
Nita, D., Steriade, M. & Amzica, F. Hyperpolarisation rectification in cat lateral geniculate neurons modulated by intact corticothalamic projections. J. Physiol. (Lond.)552, 325–332 (2003). ArticleCAS Google Scholar
Eyding, D., Macklis, J. D., Neubacher, U., Funke, K. & Wörgötter, F. Selective elimination of corticogeniculate feedback abolishes the electroencephalogram dependence of primary visual cortical receptive fields and reduces their spatial specificity. J. Neurosci.23, 7021–7033 (2003). ArticleCASPubMed Google Scholar
Ferrara, M. et al. Regional differences of the human sleep electroencephalogram in response to selective slow-wave sleep deprivation. Cereb. Cortex12, 737–748 (2002). ArticlePubMed Google Scholar
Marshall, L., Mölle, M. & Born, J. Spindle and slow wave rhythm at slow wave sleep transitions are linked to strong shifts in the cortical direct current potential. Neuroscience121, 1047–1053 (2003). ArticleCASPubMed Google Scholar
Lytton, W. W. & Sejnowski, T. J. Simulation of cortical pyramidal neurons synchronized by inhibitory interneurons. J. Neurophysiol.66, 1059–1079 (1991). ArticleCASPubMed Google Scholar
Tamás, G., Somogyi, P. & Buhl, E. H. Differentially interconnected networks of GABAergic interneurons in the visual cortex of the cat. J. Neurosci.18, 4255–4270 (1998). ArticlePubMed Google Scholar
Tamás, G., Buhl, E. H., Lörincz, A. & Somogyi, P. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nature Neurosci.3, 366–371 (2000). ArticlePubMed Google Scholar
Traub, R. D., Whittington, M. A., Stanford, I. M. & Jefferys, J. G. A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature383, 621–624 (1996). ArticleCASPubMed Google Scholar
Draguhn, A., Traub, R. D., Schmitz, D. & Jefferys, J. G. R. Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature394, 189–192 (1998). ArticleCASPubMed Google Scholar
Hormuzdi, S. G. et al. Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron31, 487–495 (2001). ArticleCASPubMed Google Scholar
Traub, R. D. et al. Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations. Proc. Natl Acad. Sci. USA100, 1370–1374 (2003). ArticleCASPubMed Google Scholar
Castro-Alamancos, M. A & Connors, B. W. Spatiotemporal properties of short-term plasticity in sensorimotor thalamocortical pathways of the rat. J. Neurosci.16, 2767–2779 (1996). ArticleCASPubMed Google Scholar
Castro-Alamancos, M. A. & Connors, B. W. Cellular mechanisms of the augmenting response: short-term plasticity in a thalamocortical pathway. J. Neurosci.16, 7742–7756 (1996). ArticleCASPubMed Google Scholar
Steriade, M. & Timofeev, I. Corticothalamic operations through prevalent inhibition of thalamocortical neurons. Thal. Rel. Syst.1, 225–236 (2001). Article Google Scholar
Steriade, M. & Timofeev, I. Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron37, 563–576 (2003). ArticleCASPubMed Google Scholar
Bazhenov, M., Timofeev, I., Steriade, M. & Sejnowski, T. J. Computational models of thalamocortical augmenting responses. J. Neurosci.18, 6444–6465 (1998). ArticleCASPubMed Google Scholar
Houweling, A. R. et al. Frequency-selective augmenting responses by short-term synaptic depression in cat neocortex. J. Physiol. (Lond.)542, 599–617 (2002). ArticleCAS Google Scholar
Morison, R. S. & Dempsey, E. W. Mechanism of thalamocortical augmentation and repetition. Am. J. Physiol.138, 297–308 (1942). Article Google Scholar
Steriade, M. Impact of network activities on neuronal properties in corticothalamic systems. J. Neurophysiol.86, 1–39 (2001). ArticleCASPubMed Google Scholar
Steriade, M. & Timofeev, I. Short-term plasticity during intrathalamic augmenting responses in decorticated cats. J. Neurosci.17, 3778–3795 (1997). ArticleCASPubMed Google Scholar
Timofeev, I. & Steriade, M. Cellular mechanisms underlying intrathalamic augmenting responses of reticular and relay neurons. J. Neurophysiol.79, 2716–2729 (1998). ArticleCASPubMed Google Scholar
Bazhenov, M., Timofeev, I., Steriade, M. & Sejnowski, T. J. Cellular and network models for intrathalamic augmenting responses during 10-Hz stimulation. J. Neurophysiol.79, 2730–2748 (1998). ArticleCASPubMed Google Scholar
Nuñez, A., Amzica, F. & Steriade, M. Electrophysiology of cat association cortical neurons in vivo: intrinsic properties and synaptic responses. J. Neurophysiol.70, 418–430 (1993). ArticlePubMed Google Scholar
Steriade, M., Nuñez, A. & Amzica, F. Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms. J. Neurosci.13, 3266–3283 (1993). ArticleCASPubMed Google Scholar
Steriade, M. In Cerebral Cortex: Normal and Altered States of Function Vol. 9 (eds Peters, A. & Jones, E. G.) 279–357 (Plenum, New York, 1991). Book Google Scholar
Cissé, Y., Grenier, F., Timofeev, I. & Steriade, M. Electrophysiological properties and input–output organization of callosal neurons in cat association cortex. J. Neurophysiol.89, 1402–1413 (2003). ArticlePubMed Google Scholar
Kandel, A. & Buzsáki, G. Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of rat. J. Neurosci.17, 6783–6797 (1997). ArticleCASPubMed Google Scholar
Steriade, M., Contreras, D., Curró Dossi, R. & Nuñez, A. The slow (<1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J. Neurosci.13, 3284–3299 (1993). ArticleCASPubMed Google Scholar
Frank, M. G., Issa, N. P. & Stryker, M. P. Sleep enhances plasticity in the developing visual cortex. Neuron30, 275–287 (2001). ArticleCASPubMed Google Scholar
Slotnick, S. D., Moo, L. R., Kraut, M. A., Lesser, R. P. & Hart, J. Interactions between thalamic and cortical rhythms during semantic memory recall in human. Proc. Natl Acad. Sci. USA99, 6440–6443 (2002). ArticleCASPubMed Google Scholar
Desimone, R. & Duncan, J. Neural mechanisms of selective attention. Annu. Rev. Neurosci.18, 193–222 (1995). ArticleCASPubMed Google Scholar
Fuster, J. M. Network memory. Trends Neurosci.20, 451–459 (1996). Article Google Scholar
Goldman-Rakic, P. S. Regional and cellular fractionation of working memory. Proc. Natl Acad. Sci. USA93, 13473–13480 (1996). ArticleCASPubMed Google Scholar
Rolls, E. T., Inoue, K. & Browning, A. Activity of primate subgenual cingulated cortex neurons is related to sleep. J. Neurophysiol.90, 134–142 (2003). ArticlePubMed Google Scholar
Drevets, W. C. & Raichle, M. E. Neuroanatomical circuits in depression: implications for treatment mechanisms. Psychopharmacol. Bull.28, 261–274 (1992). CASPubMed Google Scholar
Mayberg, H. S. Limbic–cortical dysregulation: a proposed model of depression. J. Neuropsychiatry9, 471–481 (1997). ArticleCAS Google Scholar
Koch, C. In Consciousness: At the Frontiers of Neuroscience. Advances in Neurology Vol. 77 (eds Jasper, H. H., Descarries, L., Castelucci, V. F. & Rossignol, S.) 229–241 (Lippincott-Raven, Philadelphia, 1998). Google Scholar
Steriade, M. & Deschênes, M. Inhibitory processes and interneuronal apparatus in motor cortex during sleep and waking. II. Recurrent and afferent inhibition of pyramidal tract neurons. J. Neurophysiol.37, 1093–1113 (1974). ArticleCASPubMed Google Scholar
Livingstone, M. S. & Hubel, D. H. Effects of sleep and arousal on the processing of visual information in the cat. Nature291, 554–561 (1981). ArticleCASPubMed Google Scholar
Steriade, M. & Timofeev, I. In Sleep and Brain Plasticity (eds Maquet, P., Stickgold, R. & Smith, C. S.) 271–291 (Oxford Univ. Press, 2002). Google Scholar
Steriade, M. & Contreras, D. Spike–wave complexes and fast runs of cortically generated seizures. I. Role of neocortex and thalamus. J. Neurophysiol.80, 1439–1455 (1998). ArticleCASPubMed Google Scholar
Steriade, M. Interneuronal epileptic discharges related to spike-and-wave cortical seizures in behaving monkeys. Electroencephalogr. Clin. Neurophysiol.37, 247–263 (1974). ArticleCASPubMed Google Scholar
Steriade, M. & Amzica, F. Dynamic coupling among neocortical neurons during evoked and spontaneous spike–wave seizure activity. J. Neurophysiol.72, 2051–2069 (1994). ArticleCASPubMed Google Scholar
Amzica, F. & Steriade, M. Short- and long-range neuronal synchronization of the slow (<1 Hz) cortical oscillation. J. Neurophysiol.73, 20–38 (1995). ArticleCASPubMed Google Scholar
Amzica, F. & Steriade, M. Disconnection of intracortical synaptic linkages disrupts synchronization of a slow oscillation. J. Neurosci.15, 4658–4677 (1995). ArticleCASPubMed Google Scholar
Meeren, H. K. M., Pijn, J. P. M., van Luijtelaar, E. L. J. M., Coenen, A. M. L. & Lopes da Silva, F. H. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J. Neurosci.22, 1480–1495 (2002). ArticleCASPubMed Google Scholar
Neckelmann, D., Amzica, F. & Steriade, M. Spike–wave complexes and fast components of cortically generated seizures. III. Synchronizing mechanisms. J. Neurophysiol.80, 1480–1494 (1998). ArticleCASPubMed Google Scholar
Steriade, M. & Contreras, D. Relations between cortical and thalamic cellular events during transition from sleep pattern to paroxysmal activity. J. Neurosci.15, 623–642 (1995). The first demonstration that, during cortically generated spike–wave seizures, thalamocortical neurons are steadily hyperpolarized, owing to corticothalamic activation of thalamic reticular neurons. ArticleCASPubMed Google Scholar
Pinault, D. et al. Intracellular recordings in thalamic neurones during spontaneous spike and wave discharges in rats with absence epilepsy. J. Physiol. (Lond.)509, 449–456 (1998). ArticleCAS Google Scholar
Crunelli, V. & Leresche, N. Childhood absence epilepsy: genes, channels, neurons and networks. Nature Rev. Neurosci.3, 371–382 (2002). A comprehensive review based on data from genetic models of absence epilepsy, which emphasize the neocortical origin of this type of seizure and the inhibition of thalamocortical neurons. ArticleCAS Google Scholar
Timofeev, I., Grenier, F. & Steriade, M. Spike–wave complexes and fast runs of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons. J. Neurophysiol.80, 1495–1513 (1998). ArticleCASPubMed Google Scholar
Slaght, S. J., Leresche, N., Deniau, J. M., Crunelli, V. & Charpier, S. Activity of thalamic reticular neurons during spontaneous genetically determined spike and wave discharges. J. Neurosci.22, 2323–2334 (2002). ArticleCASPubMed Google Scholar
Prince, D. A. & Tseng, G. F. Epileptogenesis in chronically injured cortex: in vitro studies. J. Neurophysiol.69, 1276–1291 (1993). ArticleCASPubMed Google Scholar
Li, H. & Prince, D. A. Synaptic activity in chronically injured, epileptogenic sensory-motor neocortex. J. Neurophysiol.88, 2–12 (2002). ArticlePubMed Google Scholar
Topolnik, L., Steriade, M. & Timofeev, I. Hyperexcitability of intact neurons underlies acute development of trauma-induced electrographic seizures in cats in vivo. Eur. J. Neurosci.18, 486–496 (2003). ArticlePubMed Google Scholar
Moody, W. J., Futamachi, K. J. & Prince, D. A. Extracellular potassium activity during epileptogenesis. Exp. Neurol.42, 248–263 (1974). ArticleCASPubMed Google Scholar
Jensen, M. S. & Yaari, Y. Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. J. Neurophysiol.77, 1224–1233 (1997). ArticleCASPubMed Google Scholar
Grenier, F., Timofeev, I. & Steriade, M. Focal synchronization of ripples (80–200 Hz) in neocortex and their neuronal correlates. J. Neurophysiol.86, 1884–1898 (2001). ArticleCASPubMed Google Scholar
Traub, R. D. et al. A possible role for gap junctions in generation of very fast EEG oscillations preceding the onset of, or perhaps initiating, seizures. Epilepsia42, 153–170 (2001). CASPubMed Google Scholar
Bragin, A., Mody, I., Wilson, C. L. & Engel, J. Local generation of fast ripples in epileptic brain. J. Neurosci.22, 2012–2021 (2002). ArticleCASPubMed Google Scholar
Grenier, F., Timofeev, I., Crochet, S. & Steriade, M. Spontaneous field potentials influence the activity of neocortical neurons during paroxysmal activities in vivo. Neuroscience119, 277–291 (2003). ArticleCASPubMed Google Scholar
Steriade, M., Amzica, F., Neckelmann, D. & Timofeev, I. Spike–wave complexes and fast runs of cortically generated seizures. II. Extra- and intracellular patterns. J. Neurophysiol.80, 1456–1479 (1998). ArticleCASPubMed Google Scholar
Johnston, D. & Brown, T. H. Giant spike potential hypothesis for epileptiform activity. Science211, 294–297 (1981). ArticleCASPubMed Google Scholar
Timofeev, I., Grenier, F. & Steriade, M. The role of chloride-dependent inhibition and the activity of fast-spiking neurons during cortical spike–wave electrographic seizures. Neuroscience114, 1115–1132 (2002). ArticleCASPubMed Google Scholar
Steriade, M. & Amzica, F. Intracellular study of excitability in the seizure-prone neocortex in vivo. J. Neurophysiol.82, 3108–3122 (1999). ArticleCASPubMed Google Scholar
Neckelmann, D., Amzica, F. & Steriade, M. Changes in neuronal conductance during different components of cortically generated spike–wave seizures. Neuroscience96, 475–485 (2000). ArticleCASPubMed Google Scholar
Steriade, M., Domich, L., Oakson, G. & Deschênes, M. The deafferented reticularis thalami nucleus generates spindle rhythmicity. J. Neurophysiol.57, 260–273 (1987). ArticleCASPubMed Google Scholar
McCormick, D. A. & Pape, H. -C. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J. Physiol. (Lond.)431, 291–318 (1990). ArticleCAS Google Scholar
Leresche, N., Lightowler, S., Soltesz, I., Jassik-Gerschenfeld, D. & Crunelli, V. Low-frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. J. Physiol. (Lond.)441, 155–174 (1991). ArticleCAS Google Scholar
Curró Dossi, R., Nuñez, A. & Steriade, M. Electrophysiology of a slow (0.5–4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. J. Physiol. (Lond.)447, 215–234 (1992). Article Google Scholar
Wilson, C. J. & Kawaguchi, Y. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci.16, 2397–2410 (1996). ArticleCASPubMed Google Scholar
Magill, P. J., Bolam, P. & Bevan, M. D. Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical EEG. J. Neurosci.20, 820–833 (2000). ArticleCASPubMed Google Scholar
Mahon, S., Deniau, J. M. & Charpier, S. Relationship between EEG potentials and intracellular activity of striatal and cortico-striatal neurons: an in vivo study under different anesthetics. Cereb. Cortex11, 360–373 (2001). ArticleCASPubMed Google Scholar
He, J. Slow oscillation in non-lemniscal auditory thalamus. J. Neurosci.23, 8281–8290 (2003). ArticleCASPubMed Google Scholar
Collins, D. R., Pelletier, J. G. & Paré, D. Slow and fast (gamma) neuronal oscillations in the perirhinal cortex and lateral amygdala. J. Neurophysiol.85, 1661–1672 (2001). ArticleCASPubMed Google Scholar
Paré, D., Collins, D. R. & Pelletier, J. G. Amygdala oscillations and the consolidation of emotional memories. Trends Cogn. Sci.6, 306–314 (2002). ArticlePubMed Google Scholar
Sirota, A., Csicsvari, J., Buhl, D. & Buzsáki, G. Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl Acad. Sci. USA100, 2065–2069 (2003). ArticleCASPubMed Google Scholar
Dickson, C. T., Biella, G. & DeCurtis, M. Slow periodic events and their transition to gamma oscillations in the entorhinal cortex of the isolated guinea pig brain. J. Neurophysiol.90, 39–46 (2003). ArticlePubMed Google Scholar
Hughes, S. W., Cope, D. W., Blethyn, K. L. & Crunelli, V. Cellular mechanisms of the slow (<1 Hz) oscillation in thalamocortical neurons in vitro. Neuron33, 947–958 (2002). ArticleCASPubMed Google Scholar
Contreras, D., Timofeev, I. & Steriade, M. Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. J. Physiol. (Lond.)494, 251–264 (1996). ArticleCAS Google Scholar
Timofeev, I., Contreras, D. & Steriade, M. Synaptic responsiveness of cortical and thalamic neurons during various phases of slow oscillation in cat. J. Physiol. (Lond.)494, 265–278 (1996). ArticleCAS Google Scholar
Bazhenov, M., Timofeev, I., Steriade, M. & Sejnowski, T. J. Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J. Neurosci.22, 8691–8704 (2002). ArticleCASPubMed Google Scholar
Sanchez-Vives, M. V. & McCormick, D. A. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neurosci.3, 1027–1034 (2000). ArticleCASPubMed Google Scholar
Compte, A., Sanchez-Vives, M., McCormick, D. A. & Wang, X. J. Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagation in a cortical network model. J. Neurophysiol.89, 2707–2725 (2003). ArticlePubMed Google Scholar
Shu, Y., Hasenstaub, A., Badoual, M., Bal, T. & McCormick, D. A. Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J. Neurosci.23, 10388–10401 (2003). ArticleCASPubMed Google Scholar
Achermann, P. & Borbély, A. Low-frequency (<1 Hz) oscillations in the human sleep EEG. Neuroscience81, 213–222 (1997). The demonstration that slow and delta sleep oscillations are distinct rhythms, on the basis of their differential dynamics during sleep in humans. ArticleCASPubMed Google Scholar
Amzica, F. & Steriade, M. The K-complex: its slow (<1 Hz) rhythmicity and relation to delta waves. Neurology49, 952–959 (1997). ArticleCASPubMed Google Scholar
Llinás, R. R. & Ribary, U. Coherent 40-Hz oscillation characterizes dream state in humans. Proc. Natl Acad. Sci. USA90, 2078–2081 (1993). ArticlePubMed Google Scholar
Gray, C. M., König, P., Engel, A. K. & Singer, W. Stimulus-specific neuronal oscillations in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature338, 334–337 (1989). ArticleCASPubMed Google Scholar
Siegel, M. & König, P. A functional gamma-band defined by stimulus-dependent synchronization in area 18 of awake behaving cats. J. Neurosci.23, 4251–4260 (2003). ArticleCASPubMed Google Scholar
Singer, W. Neuronal synchrony: a versatile code for the definition of relations? Neuron24, 49–65 (1999). ArticleCASPubMed Google Scholar
Shadlen, M. N. & Movshon, J. A. Synchrony unbound: a critical evaluation of the temporal binding problem. Neuron24, 67–77 (1999). ArticleCASPubMed Google Scholar
Llinás, R., Grace, A. A. & Yarom, Y. In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. Proc. Natl Acad. Sci. USA88, 897–901 (1991). The first demonstration of voltage (depolarization)-dependent gamma activity in neocortical interneurons. ArticlePubMed Google Scholar
Nuñez, A., Amzica, F. & Steriade, M. Voltage-dependent fast (20–40 Hz) oscillations in long-axoned neocortical neurons. Neuroscience51, 7–10 (1992). ArticlePubMed Google Scholar
Steriade, M., Curró Dossi, R., Paré, D. & Oakson, G. Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc. Natl. Acad. Sci. USA88, 4396–4400 (1991). ArticleCASPubMed Google Scholar
Shouse, M. N., da Silva, A. M. & Sammaritano, M. Circadian rhythm, sleep, and epilepsy. J. Clin. Neurophysiol.13, 32–50 (1996). ArticleCASPubMed Google Scholar
Noachtar, S. In Epilepsy and Sleep (eds Dinner, D. S. & Lüders, H. O.) 75–83 (Academic, San Diego, 2001). Book Google Scholar
Staba, R. J., Wilson, C. L., Bragin, A., Fried, I. & Engel, J. Sleep states differentiate single neuron activity recorded from human epileptic hippocampus, entorhinal cortex, and subiculum. J. Neurosci.22, 5694–5704 (2002). ArticleCASPubMed Google Scholar
Penfield, W. & Jasper, H. H. Epilepsy and the Functional Anatomy of the Human Brain (Little & Brown, Boston, 1954). Book Google Scholar
Jasper, H. H. & Droogleever-Fortuyn, J. Experimental studies on the functional anatomy of petit-mal epilepsy. Res. Publ. Ass. Nerv. Ment. Dis.26, 272–298 (1949). Google Scholar
Marcus, E. W., Watson, C. W. & Simon, S. A. An experimental model of some varieties of petit mal epilepsy. Electrical–behavioral correlations of acute bilateral epileptogenic foci in cerebral cortex. Epilepsia9, 233–248 (1968). ArticleCASPubMed Google Scholar
Lemieux, J. F. & Blume, W. T. Topographical evolution of spike–wave complexes. Brain Res.373, 275–287 (1986). ArticleCASPubMed Google Scholar
Kobayashi, K., Nishibayashi, N., Ohtsuka, Y., Oka, E. & Ohtahara, S. Epilepsy with electrical status epilepticus during slow sleep and secondary bilateral synchrony. Epilepsia35, 1097–1103 (1994). ArticleCASPubMed Google Scholar
Gibbs, F. A. & Gibbs, E. L. Atlas of Electroencephalography (Addison-Wesley, Cambridge, Massachusetts, 1952). Google Scholar
Kellaway, P., Hrachovy, R. A., Frost, J. D. & Zion, T. Precise characterization and quantification of infantile spasms. Ann. Neurol.6, 214–218 (1979). ArticleCASPubMed Google Scholar
Niedermeyer, E. In Electroencephalography: Basic Principles, Clinical Applications and Related Fields 4th edn (eds Niedermeyer, E. & Lopes da Silva, F.) 235–260 (Williams & Wilkins, Baltimore, 1999). Google Scholar
Steriade, M. Coherent oscillations and short-term plasticity in corticothalamic networks. Trends Neurosci.22, 337–345 (1999). ArticleCASPubMed Google Scholar
Amzica, F. & Steriade, M. The functional significance of K-complexes. Sleep Med. Rev.6, 139–149 (2002). ArticlePubMed Google Scholar
Timofeev, I. & Steriade, M. Fast (mainly 30–100 Hz) oscillations in the cat cerebellothalamic pathway and their synchronization with cortical potentials. J. Physiol. (Lond.)504, 153–168 (1997). ArticleCAS Google Scholar