Dendritic spines and long-term plasticity (original) (raw)
Cajal, S. R. Histology of the Nervous System of Man and Vertebrate (Oxford Univ. Press, 1995; first published 1899) (trans. Swanson, N & Swanson, L. W.). Google Scholar
Rosenzweig, M. R. & Bennett, E. L. Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav. Brain Res.78, 57–65 (1996). ArticleCASPubMed Google Scholar
Purpura, D. P. Pathobiology of cortical neurons in metabolic and unclassified amentias. Res. Publ. Assoc. Res. Nerv. Ment. Dis.57, 43–68 (1979). CASPubMed Google Scholar
Sorra, K. E. & Harris, K. M. Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus10, 501–511 (2000). ArticleCASPubMed Google Scholar
Popov, V. I. et al. Remodelling of synaptic morphology but unchanged synaptic density during late phase long-term potentiation (LTP): a serial section electron micrograph study in the dentate gyrus in the anaesthetised rat. Neuroscience128, 251–262 (2004). ArticleCASPubMed Google Scholar
Yuste, R. & Bonhoeffer, T. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nature Rev. Neurosci.5, 24–34 (2004). ArticleCAS Google Scholar
Trachtenberg, J. T. et al. Long term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature420, 788–794 (2002). In vivo2-photon chronic imaging of the barrel field in adult mice, showing that at least half of the dendritic spines in cortical neurons live less than one month, and so questioning the long-held belief that spines are stable structures (but see references 8 and 62 for contradictory observations). ArticleCASPubMed Google Scholar
Mizrahi, A. & Katz, L. C. Dendritic stability in the adult olfactory bulb. Nature Neurosci.6, 1201–1207 (2003). ArticleCASPubMed Google Scholar
Jourdain, P., Fukunaga, K. & Muller, D. Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation. J. Neurosci.23, 10645–10649 (2003). ArticleCASPubMedPubMed Central Google Scholar
Goldin, M., Segal, M. & Avignone, E. Functional plasticity triggers formation and pruning of dendritic spines in cultured hippocampal networks. J. Neurosci.21, 186–193 (2001). ArticleCASPubMedPubMed Central Google Scholar
Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature399, 66–70 (1999). The first confocal microscopic study to show the formation of new spines after LTP in cultured hippocampal slices. These results were extended by the work described in reference 10, which also showed that the new spines are innervated by presynaptic terminals in cultured hippocampal neurons. ArticleCASPubMed Google Scholar
Harris, K. M. & Kater, S. B. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu. Rev. Neurosci.17, 341–371 (1994). ArticleCASPubMed Google Scholar
El-Husseini, A. E., Schnell, E., Chetkovich, D. M., Nicoll, R. A. & Bredt, D. S. PSD-95 involvement in maturation of excitatory synapses. Science290, 1364–1368 (2000). ArticleCASPubMed Google Scholar
Abe, K., Chisaka, O., Van Roy, F. & Takeichi, M. Stability of dendritic spines and synaptic contacts is controlled by α N-catenin. Nature Neurosci.7, 357–363 (2004). ArticleCASPubMed Google Scholar
Woolley, C. S. & McEwen, B. S. Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. J. Comp. Neurol.336, 293–306 (1993). Showed for the first time that dendritic spine density in the hippocampus can vary by as much as 30% across the oestrus cycle in adult female rats, bringing into question the relevance of spine density changes to memory storage. ArticleCASPubMed Google Scholar
Star, E. N., Kwiatkowski, D. J. & Murthy, V. N. Rapid turnover of actin in dendritic spines and its regulation by activity. Nature Neurosci.5, 239–246 (2002). ArticleCASPubMed Google Scholar
Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron20, 847–854 (1998). An elegant demonstration that dendritic spines move and change their size and shape continuously. This raises questions about the relevance of a 20% change in spine size after conditioning ArticleCASPubMed Google Scholar
Richards, D. A., De Paola, V., Caroni, P., Gahwiler, B. H. & McKinney, R. A. AMPA-receptor activation regulates the diffusion of a membrane marker in parallel with dendritic spine motility in the mouse hippocampus. J. Physiol. (Lond.)558, 503–512 (2004). ArticleCAS Google Scholar
Popov, V. I., Bocharova, L. S. & Bragin, A. G. Repeated changes of dendritic morphology in the hippocampus of ground squirrels in the course of hibernation. Neuroscience48, 45–51 (1992). ArticleCASPubMed Google Scholar
Bock, J. & Braun, K. Blockade of _N_-methyl-D-aspartate receptor activation suppresses learning-induced synaptic elimination. Proc. Natl Acad. Sci. USA96, 2485–2490 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hasbani, M. J., Schlief, M. L., Fisher, D. A. & Goldberg, M. P. Dendritic spines lost during glutamate receptor activation reemerge at original sites of synaptic contact. J. Neurosci.21, 2393–2403 (2001). ArticleCASPubMedPubMed Central Google Scholar
Segal, M., Korkotian, E. & Murphy, D. D. Dendritic spine induction and pruning: common cellular mechanisms? Trends Neurosci.23, 53–57 (2000). ArticleCASPubMed Google Scholar
Pilpel, Y. & Segal, M. Activation of PKC induces rapid morphological plasticity in dendrites of hippocampal neurons via Rac and Rho-dependent mechanisms. Eur. J. Neurosci.19, 3151–3164 (2004). Shows that the removal of dendritic spines from Rho-overexpressing neurons does not deplete their synapses, and that they can produce normal mEPSCs. ArticlePubMed Google Scholar
Kirov, S. A., Petrak, L. J., Fiala, J. C. & Harris, K. M. Dendritic spines disappear with chilling but proliferate excessively upon rewarming of mature hippocampus. Neuroscience127, 69–80 (2004). ArticleCASPubMed Google Scholar
Svoboda, K., Tank, D. W. & Denk, W. Direct measurement of coupling between dendritic spines and shafts. Science272, 716–719 (1996). ArticleCASPubMed Google Scholar
Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neurosci.4, 1086–1092 (2001). ArticleCASPubMed Google Scholar
Murphy, D. D., Cole, N. B., Greenberger, V. & Segal, M. Estradiol increases dendritic spine density by reducing GABA neurotransmission in hippocampal neurons. J. Neurosci.18, 2550–2559 (1998). ArticleCASPubMedPubMed Central Google Scholar
Murase, S., Mosser, E. & Schuman, E. M. Depolarization drives β-catenin into neuronal spines promoting changes in synaptic structure and function. Neuron35, 91–105 (2002). ArticleCASPubMed Google Scholar
Zito, K., Knott, G., Shepherd, G. M., Shenolikar, S. & Svoboda, K. Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton. Neuron44, 321–334 (2004). ArticleCASPubMed Google Scholar
Boda, B. et al. The mental retardation protein PAK3 contributes to synapse formation and plasticity in hippocampus. J. Neurosci.24, 10816–10825 (2004). ArticleCASPubMedPubMed Central Google Scholar
Desmond, N. L. & Levy, W. B. Changes in the postsynaptic density with long-term potentiation in the dentate gyrus. J. Comp. Neurol.253, 476–482 (1986). ArticleCASPubMed Google Scholar
Moser, M. B. Making more synapses: a way to store information? Cell. Mol. Life Sci.55, 593–600 (1999). ArticleCASPubMed Google Scholar
Eyre, M. D., Richter-Levin, G., Avital, A. & Stewart, M. G. Morphological changes in hippocampal dentate gyrus synapses following spatial learning in rats are transient. Eur. J. Neurosci.17, 1973–1980 (2003). ArticlePubMed Google Scholar
Geinisman, Y., Berry, R. W., Disterhoft, J. F., Power, J. M. & Van der Zee, E. A. Associative learning elicits the formation of multiple-synapse boutons. J. Neurosci.21, 5568–5573 (2001). ArticleCASPubMedPubMed Central Google Scholar
Geinisman, Y. Structural synaptic modifications associated with hippocampal LTP and behavioral learning. Cereb. Cortex10, 952–962 (2000). ArticleCASPubMed Google Scholar
Knafo, S., Ariav, G., Barkai, E. & Libersat, F. Olfactory learning induced increase in spine density along the apical dendrites of CA1 hippocampal neurons. Hippocampus14, 819–825 (2004). ArticlePubMed Google Scholar
Leuner, B., Falduto, J. & Shors, T. J. Associative memory formation increases the observation of dendritic spines in the hippocampus. J. Neurosci.23, 659–665 (2003). ArticleCASPubMedPubMed Central Google Scholar
Matsuzaki, M., Honkura, N., Ellis-Davis, G. C. R. & Kasai, H. Structural basis of long term potentiation in single dendritic spines. Nature429, 761–766 (2004). The first demonstration that conditioning can change the volume of spine heads and increase the reactivity of the spine to locally uncaged glutamate. ArticleCASPubMedPubMed Central Google Scholar
Otmakhov, N. et al. Persistent accumulation of calcium/calmodulin-dependent protein kinase II in dendritic spines after induction of NMDA receptor-dependent chemical long-term potentiation. J. Neurosci.24, 9324–9331 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lang, C. et al. Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proc. Natl Acad. Sci. USA101, 16665–16670 (2004). ArticleCASPubMedPubMed Central Google Scholar
Okamoto, K., Nagai, T., Miyawaki, A. & Hayashi, Y. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nature Neurosci.7, 1104–1112 (2004). Elegant use of FRET to show bidirectional changes in spine volume and the polymeric status of actin in LTP and LTD. ArticleCASPubMed Google Scholar
Fukazawa, Y. et al. Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron38, 447–460 (2003). ArticleCASPubMed Google Scholar
Zhou, Q., Homma, K. J. & Poo, M. M. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron44, 749–757 (2004). ArticleCASPubMed Google Scholar
Fifkova, E. & Anderson, C. L. Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer. Exp. Neurol.74, 621–627 (1981). ArticleCASPubMed Google Scholar
Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science283, 1860–1861 (1999). Article Google Scholar
Goldin, M. & Segal, M. Protein kinase C and ERK involvement in dendritic spine plasticity in cultured rodent hippocampal neurons. Eur. J. Neurosci.17, 2529–2539 (2003). ArticlePubMed Google Scholar
Nägerl, U. V., Eberhorn, N., Cambridge, S. B. & Bonhoeffer, T. Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron44, 759–767 (2004). ArticlePubMed Google Scholar
Lowndes, M. & Stewart, M. G. Dendritic spine density in the lobus parolfactorius of the domestic chick is increased 24 h after one-trial passive avoidance training. Brain Res.654, 129–136 (1994). ArticleCASPubMed Google Scholar
O'Malley, A., O'Connell, C., Murphy, K. J. & Regan, C. M. Transient spine density increases in the mid-molecular layer of hippocampal dentate gyrus accompany consolidation of a spatial learning task in the rodent. Neuroscience99, 229–232 (2000). ArticleCASPubMed Google Scholar
Moser, M. B., Trommald, M. & Andersen, P. An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc. Natl Acad. Sci. USA91, 12673–12675 (1994). ArticleCASPubMedPubMed Central Google Scholar
Swann, J. W., Al-Noori, S., Jiang, M. & Lee, C. L. Spine loss and other dendritic abnormalities in epilepsy. Hippocampus10, 617–625 (2000). ArticleCASPubMed Google Scholar
Huber, K. M., Roder, J. C. & Bear, M. F. Chemical induction of mGluR5- and protein synthesis-dependent long-term depression in hippocampal area CA1. J. Neurophysiol.86, 321–325 (2001). ArticleCASPubMed Google Scholar
Vanderklish, P. W. & Edelman, G. M. Dendritic spines elongate after stimulation of group 1 metabotropic glutamate receptors in cultured hippocampal neurons. Proc. Natl Acad. Sci. USA99, 1639–1644 (2002). ArticleCASPubMedPubMed Central Google Scholar
Edwards, F. A. Anatomy and electrophysiology of fast central synapses lead to a structural model for long-term potentiation. Physiol. Rev.75, 759–787 (1995). ArticleCASPubMed Google Scholar
Carlin, R. K. & Siekevitz, P. Plasticity in the central nervous system: do synapses divide? Proc. Natl Acad. Sci. USA80, 3517–3521 (1983). ArticleCASPubMedPubMed Central Google Scholar
Toni, N., Buchs, P. A., Nikonenko, I., Bron, C. R. & Muller, D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature402, 421–425 (1999). ArticleCASPubMed Google Scholar
Harris, K. M., Fiala, J. C. & Ostroff, L. Structural changes at dendritic spine synapses during long-term potentiation. Phil. Trans. R. Soc. Lond. B358, 745–748 (2003). Article Google Scholar
Grutzendler, J., Kasthuri, N. & Gan, W. B. Long-term dendritic spine stability in the adult cortex. Nature420, 812–816 (2002). ArticleCASPubMed Google Scholar
Holtmaat, A. J. et al. Transient and persistent dendritic spines in the neocortex in vivo. Neuron42, 279–291 (2005). ArticleCAS Google Scholar
Lieshoff, C. & Bischof, H. J. The dynamics of spine density changes. Behav. Brain Res.140, 87–95 (2003). ArticlePubMed Google Scholar
Airey, D. C., Kroodsma, D. E. & DeVoogd, T. J. Differences in the complexity of song tutoring cause differences in the amount learned and in dendritic spine density in a songbird telencephalic song control nucleus. Neurobiol. Learn. Mem.73, 274–281 (2000). ArticleCASPubMed Google Scholar
Millesi, E., Prossinger, H., Dittami, J. P. & Fieder, M. Hibernation effects on memory in European ground squirrels (Spermophilus citellus). J. Biol. Rhythms16, 264–271 (2001). ArticleCASPubMed Google Scholar
Segal, M., Greenberger, V. & Korkotian, E. Formation of dendritic spines in cultured striatal neurons depends on excitatory afferent activity. Eur. J. Neurosci.17, 2573–2585 (2003). ArticlePubMed Google Scholar
Kossel, A. H., Williams, C. V., Schweizer, M. & Kater, S. B. Afferent innervation influences the development of dendritic branches and spines via both activity-dependent and non-activity-dependent mechanisms. J. Neurosci.17, 6314–6324 (1997). ArticleCASPubMedPubMed Central Google Scholar
Emptage, N. J., Reid, C. A., Fine, A. & Bliss, T. V. Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses. Neuron38, 797–804 (2003). ArticleCASPubMed Google Scholar
Voronin, L. L. & Cherubini, E. 'Deaf, mute and whispering' silent synapses: their role in synaptic plasticity. J. Physiol. (Lond.)557 (Pt 1), 3–12 (2004). ArticleCAS Google Scholar
Deller, T. et al. Synaptopodin-deficient mice lack a spine apparatus and show deficits in synaptic plasticity. Proc. Natl Acad. Sci. USA100, 10494–10499 (2003). ArticleCASPubMedPubMed Central Google Scholar
Frick, A., Magee, J. & Johnston, D. LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nature Neurosci.7, 126–135 (2004). ArticleCASPubMed Google Scholar
Korkotian, E., Holcman, D. & Segal, M. Dynamic regulation of spine-dendrite coupling in cultured hippocampal neurons. Eur. J. Neurosci.20, 2649–2663 (2004). ArticlePubMed Google Scholar
Dunaevsky, A., Blazeski, R., Yuste, R. & Mason, C. Spine motility with synaptic contact. Nature Neurosci.4, 685–686 (2001). ArticleCASPubMed Google Scholar
Fischer, M., Kaech, S., Wagner, U., Brinkhaus, H. & Matus, A. Glutamate receptors regulate actin-based plasticity in dendritic spines. Nature Neurosci.3, 887–894 (2000). ArticleCASPubMed Google Scholar
Petrozzino, J. J., Pozzo Miller, L. D. & Connor, J. A. Micromolar Ca2+ transients in dendritic spines of hippocampal pyramidal neurons in brain slice. Neuron14, 1223–1231 (1995). ArticleCASPubMed Google Scholar
Yasuda, R., Sabatini, B. L. & Svoboda, K. Plasticity of calcium channels in dendritic spines. Nature Neurosci.6, 948–955 (2003). ArticleCASPubMed Google Scholar
Sala, C. et al. Inhibition of dendritic spine morphogenesis and synaptic transmission by activity-inducible protein Homer1a. J. Neurosci.23, 6327–6337 (2003). ArticleCASPubMedPubMed Central Google Scholar
Vazquez, L. E., Chen, H. -J., Sokolova, I., Knuesel, I. & Kennedy, M. B. SynGAP regulates spine formation. J. Neurosci.24, 8862–8872 (2004). ArticleCASPubMedPubMed Central Google Scholar
Schulz, T. W. et al. Actin/α-actinin-dependent transport of AMPA receptors in dendritic spines: role of the PDZ-LIM protein RIL. J. Neurosci.24, 8584–8594 (2004). ArticleCASPubMedPubMed Central Google Scholar
Meng, Y. et al. Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron35, 121–133 (2002). ArticleCASPubMed Google Scholar