Molecular biology of amyotrophic lateral sclerosis: insights from genetics (original) (raw)
Mulder, D. W. Clinical limits of amyotrophic lateral sclerosis. Adv. Neurol.36, 15–22 (1982). CASPubMed Google Scholar
McGuire, V., Longstreth, W. T. Jr, Koepsell, T. D. & van Belle, G. Incidence of amyotrophic lateral sclerosis in three counties in western Washington state. Neurology47, 571–573 (1996). CASPubMed Google Scholar
Mitsumoto, H., Chad, D. A. & Pioro, E. P. Amyotrophic Lateral Sclerosis (Oxford Univ. Press, New York, 1998). Google Scholar
Kurtzke, J. K. L. in Clinical Neurology (ed. Joynt, R.) (Lippincott, Philadelphia, 1989). Google Scholar
Kurtzke, J. F. Risk factors in amyotrophic lateral sclerosis. Adv. Neurol.56, 245–270 (1991). CASPubMed Google Scholar
Ince, P. G. in Amyotrophic Lateral Sclerosis (eds Brown, R. H. Jr, Meininger, V. & Swash, M.) 83–112 (Martin Dunitz, London, 2000). Google Scholar
Cleveland, D. W. & Rothstein, J. D. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nature Rev. Neurosci.2, 806–819 (2001). CAS Google Scholar
Rowland, L. P. in Amyotrophic Lateral Sclerosis and Other Motor Neuron Diseases (ed. Rowland, L. P.) 3–23 (Raven, 1992). Google Scholar
MacGowan, D. J., Scelsa, S. N. & Waldron, M. An ALS-like syndrome with new HIV infection and complete response to antiretroviral therapy. Neurology57, 1094–1097 (2001). CASPubMed Google Scholar
Steele, A. J. et al. Detection of serum reverse transcriptase activity in patients with ALS and unaffected blood relatives. Neurology64, 454–458 (2005). CASPubMed Google Scholar
Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature362, 59–62 (1993). Describes the hallmark discovery that mutations in SOD1 cause ALS in a subset of familial cases. CASPubMed Google Scholar
Yang, Y. et al. The gene encoding alsin, a protein with three guaninenucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nature Genet.29, 160–165 (2001). CASPubMed Google Scholar
Hadano, S. et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nature Genet.29, 166–173 (2001). CASPubMed Google Scholar
Chance, P. F. Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34. Am. J. Hum. Genet.62, 633–640 (1998). CASPubMedPubMed Central Google Scholar
Chen, Y. Z. et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am. J. Hum. Genet.74, 1128–1135 (2004). CASPubMedPubMed Central Google Scholar
Nishimura, A. L. et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet.75, 822–831 (2004). CASPubMedPubMed Central Google Scholar
Puls, I. et al. Mutant dynactin in motor neuron disease. Nature Genet.33, 455–456 (2003). References 12–17 describe ALS-causing gene mutations. CASPubMed Google Scholar
Ruddy, D. M. et al. Two families with familial amyotrophic lateral sclerosis are linked to a novel locus on chromosome 16q. Am. J. Hum. Genet.73, 390–396 (2003). CASPubMedPubMed Central Google Scholar
Hentati, A. et al. Linkage of a commoner form of recessive amyotrophic lateral sclerosis to chromosome 15q15-q22 markers. Neurogenetics2, 55–60 (1998). CASPubMed Google Scholar
Sapp, P. et al. Identification of three novel mutations in the gene for Cu/Zn superoxide dismutase in patients with familial amyotrophic lateral sclerosis. Neuromuscul. Disord.5, 353–357 (1995). CASPubMed Google Scholar
Abalkhail, H., Mitchell, J., Habgood, J., Orrell, R. & de Belleroche, J. A new familial amyotrophic lateral sclerosis locus on chromosome 16q12.1–16q12.2. Am. J. Hum. Genet.73, 383–389 (2003). CASPubMedPubMed Central Google Scholar
Hong, S. et al. X-linked dominant locus for late-onset familial amyotrophic lateral sclerosis. Soc. Neurosci. Abstr.24, 478 (1998). Google Scholar
Hand, C. K. et al. A novel locus for familial amyotrophic lateral sclerosis, on chromosome 18q. Am. J. Hum. Genet.70, 251–256 (2002). CASPubMed Google Scholar
Morita, M. et al. A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology66, 839–844 (2006). CASPubMed Google Scholar
Hosler, B. A. et al. Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21–q22. JAMA284, 1664–1669 (2000). CASPubMed Google Scholar
Andersen, P. M. et al. Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a decade of discoveries, defects and disputes. Amyotroph. Lateral Scler. Other Motor Neuron Disord.4, 62–73 (2003). CASPubMed Google Scholar
Andersen, P. M. et al. Phenotypic heterogeneity in motor neuron disease patients with CuZn-superoxide dismutase mutations in Scandinavia. Brain120, 1723–1737 (1997). PubMed Google Scholar
Radunovic, A. et al. Copper and zinc levels in familial amyotrophic lateral sclerosis patients with Cu/Zn gene mutations. Ann. Neurol.42, 130–131 (1997). CASPubMed Google Scholar
Yamanaka, K. & Cleveland, D. W. Determinants of rapid disease progression in ALS. Neurology65, 1859–1860 (2005). PubMed Google Scholar
Cudkowicz, M. E., McKenna-Yasek, D., Chen, C., Hedley-Whyte, E. T. & Brown, R. H. Jr. Limited corticospinal tract involvement in amyotrophic lateral sclerosis subjects with the A4V mutation in the copper/zinc superoxide dismutase gene [see comments]. Ann. Neurol.43, 703–710 (1998). CASPubMed Google Scholar
Andersen, P. M. et al. Autosomal recessive adult-onset amyotrophic lateral sclerosis associated with homozygosity for Asp90Ala CuZn-superoxide dismutase mutation. A clinical and genealogical study of 36 patients. Brain119, 1153–1172 (1996). PubMed Google Scholar
Soares, M. L. et al. Haplotypes and DNA sequence variation within and surrounding the transthyretin gene: genotype-phenotype correlations in familial amyloid polyneuropathy (V30M) in Portugal and Sweden. Eur. J. Hum. Genet.12, 225–237 (2004). CASPubMed Google Scholar
Topp, J. D., Gray, N. W., Gerard, R. D. & Horazdovsky, B. F. Alsin is a Rab5 and Rac1 guanine nucleotide exchange factor. J. Biol. Chem.23, 24612–24623 (2004). Google Scholar
Otomo, A. et al. ALS2, a novel guanine nucleotide exchange factor for the small GTPase Rab5, is implicated in endosomal dynamics. Hum. Mol. Genet.12, 1671–1687 (2003). CASPubMed Google Scholar
Kanekura, K. et al. Alsin, the product of ALS2 gene, suppresses SOD1 mutant neurotoxicity through RhoGEF domain by interacting with SOD1 mutants. J. Biol. Chem.279, 19247–19256 (2004). CASPubMed Google Scholar
Panzeri, C. et al. The first ALS2 missense mutation associated with JPLS reveals new aspects of alsin biological function. Brain129, 1710–1719 (2006). PubMed Google Scholar
Yamanaka, K. et al. Unstable mutants in the peripheral endosomal membrane component ALS2 cause early-onset motor neuron disease. Proc. Natl Acad. Sci. USA100, 16041–16046 (2003). CASPubMed Google Scholar
Cai, H. et al. Loss of ALS2 function is insufficient to trigger motor neuron degeneration in knock-out mice but predisposes neurons to oxidative stress. J. Neurosci.25, 7567–7574 (2005). CASPubMedPubMed Central Google Scholar
Hadano, S. et al. Mice deficient in the Rab5 guanine nucleotide exchange factor ALS2/alsin exhibit age-dependent neurological deficits and altered endosome trafficking. Hum. Mol. Genet.15, 233–250 (2006). CASPubMed Google Scholar
Chen, Y. Z. et al. Senataxin, the yeast Sen1p orthologue: characterization of a unique protein in which recessive mutations cause ataxia and dominant mutations cause motor neuron disease. Neurobiol. Dis.23, 97–108 (2006). CASPubMed Google Scholar
Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nature Genet.37, 806–808 (2005). CASPubMed Google Scholar
Comi, G. P. et al. Cytochrome c oxidase subunit I microdeletion in a patient with motor neuron disease. Ann. Neurol.43, 110–116 (1998). CASPubMed Google Scholar
Borthwick, G. M. et al. Motor neuron disease in a patient with a mitochondrial tRNAIle mutation. Ann. Neurol.59, 570–574 (2006). CASPubMed Google Scholar
Lambrechts, D. et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nature Genet.34, 383–394 (2003). CASPubMed Google Scholar
Van Vught, P. W. et al. Lack of association between VEGF polymorphisms and ALS in a Dutch population. Neurology65, 1643–1645 (2005). CASPubMed Google Scholar
Greenway, M. J. et al. A novel candidate region for ALS on chromosome 14q11.2. Neurology63, 1936–1938 (2004). CASPubMed Google Scholar
Al-Chalabi, A. et al. Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum. Mol. Genet.8, 157–164 (1999). CASPubMed Google Scholar
Figlewicz, D. A. et al. Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum. Mol. Genet.3, 1757–1761 (1994). CASPubMed Google Scholar
Tomkins, J. et al. Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis (ALS). Neuroreport9, 3967–3970 (1998). CASPubMed Google Scholar
Corcia, P. et al. Abnormal SMN1 gene copy number is a susceptibility factor for amyotrophic lateral sclerosis. Ann. Neurol.51, 243–246 (2002). CASPubMed Google Scholar
Veldink, J. H. et al. Homozygous deletion of the survival motor neuron 2 gene is a prognostic factor in sporadic ALS. Neurology56, 749–752 (2001). CASPubMed Google Scholar
Reaume, A. et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nature Genet.13, 43–47 (1996). CASPubMed Google Scholar
Gurney, M. Mutant mice, Cu, Zn superoxide dismutase, and motor neuron degeneration. Science266, 1586 (1994). The first description of the transgenic mouse model of ALS. Google Scholar
Cleveland, D. W., Laing, N., Hurse, P. V. & Brown, R. H. Jr. Toxic mutants in Charcot's sclerosis [letter; comment]. Nature378, 342–343 (1995). CASPubMed Google Scholar
Beckman, J. S., Carson, M., Smith, C. D. & Kuppenol, W. H. ALS, SOD, and peroxynitrite. Nature364, 584 (1993). CASPubMed Google Scholar
Wiedau-Pazos, M. et al. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science271, 515–518 (1996). CASPubMed Google Scholar
Estevez, A. G. et al. Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science286, 2498–2500 (1999). CASPubMed Google Scholar
Andrus, P. K., Fleck, T. J., Gurney, M. E. & Hall, E. D. Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem.71, 2041–2048 (1998). CASPubMed Google Scholar
Hall, E., Andrus, P., Oostveen, J., Fleck, T. & Gurney, M. Relationship of oxygen radical-induced lipid peroxidative damage to disease onset and progression in a transgenic model of familial ALS. J. Neurosci. Res.53, 66–77 (1998). CASPubMed Google Scholar
Bruijn, L. et al. Elevated free nitrotyrosine levels but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-liked superoxide dismutase 1 mutant. Proc. Natl Acad. Sci. USA94, 7606–7611 (1997). CASPubMed Google Scholar
Bruijn, L. I. et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science281, 1851–1854 (1998). CASPubMed Google Scholar
Jaarsma, D. et al. Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiol. Dis.7, 623–643 (2000). CASPubMed Google Scholar
Deng, H. X. et al. Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Proc. Natl Acad. Sci. USA103, 7142–7147 (2006). CASPubMed Google Scholar
Wong, P. C. et al. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc. Natl Acad. Sci. USA97, 2886–2891 (2000). CASPubMed Google Scholar
Wang, J. et al. Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Hum. Mol. Genet.12, 2753–2764 (2003). CASPubMed Google Scholar
Ripps, M. E., Huntley, G. W., Hof, P. R., Morrison, J. H. & Gordon, J. W. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA92, 689–693 (1995). CASPubMed Google Scholar
Bush, A. I. Is ALS caused by an altered oxidative activity of mutant superoxide dismutase? Nature Neurosci.5, 919; author reply 919–920 (2002). CASPubMed Google Scholar
Jonsson, P. A. et al. Disulphide-reduced superoxide dismutase-1 in CNS of transgenic amyotrophic lateral sclerosis models. Brain129, 451–464 (2006). PubMed Google Scholar
Johnston, J. A., Dalton, M. J., Gurney, M. E. & Kopito, R. R. Formation of high molecular weight complexes of mutant Cu,Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA97, 12571–12576 (2000). CAS Google Scholar
Wang, J., Xu, G. & Borchelt, D. R. High molecular weight complexes of mutant superoxide dismutase 1: age-dependent and tissue-specific accumulation. Neurobiol. Dis.9, 139–148 (2002). CASPubMed Google Scholar
Ray, S. S. et al. An intersubunit disulfide bond prevents in vitro aggregation of a superoxide dismutase-1 mutant linked to familial amytrophic lateral sclerosis. Biochemistry43, 4899–4905 (2004). CASPubMed Google Scholar
Matsumoto, G., Kim, S. & Morimoto, R. I. Huntingtin and mutant SOD1 form aggregate structures with distinct molecular properties in human cells. J. Biol. Chem.281, 4477–4485 (2006). CASPubMed Google Scholar
Sato, T. et al. Rapid disease progression correlates with instability of mutant SOD1 in familial ALS. Neurology65, 1954–1957 (2005). CASPubMed Google Scholar
Lindberg, M. J., Bystrom, R., Boknas, N., Andersen, P. M. & Oliveberg, M. Systematically perturbed folding patterns of amyotrophic lateral sclerosis (ALS)-associated SOD1 mutants. Proc. Natl Acad. Sci. USA102, 9754–9759 (2005). CASPubMed Google Scholar
Shinder, G. A., Lacourse, M. -C., Minotti, S. & Durham, H. D. Mutant cu/zn superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of amyotrophic lateral sclerosis. J. Biol. Chem.276, 12791–12796 (2001). CASPubMed Google Scholar
Pasinelli, P. et al. Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron43, 19–30 (2004). CASPubMed Google Scholar
Guegan, C. & Przedborski, S. Programmed cell death in amyotrophic lateral sclerosis. J. Clin. Invest.111, 153–161 (2003). CASPubMedPubMed Central Google Scholar
Durham, H., Roy, J., Dong, L. & Figlewicz, D. Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J. Neuropath. Exp. Neurol.56, 523–530 (1997). CASPubMed Google Scholar
Pasinelli, P., Borchelt, D. R., Houseweart, M. K., Cleveland, D. W. & Brown, R. H. Jr. Caspase-1 is activated in neural cells and tissue with amyotrophic lateral sclerosis-associated mutations in copper-zinc superoxide dismutase. Proc. Natl Acad. Sci. USA95, 15763–15768 (1998). CASPubMed Google Scholar
Pasinelli, P., Houseweart, M. K., Brown, R. H. Jr & Cleveland, D. W. Caspase-1 and -3 are sequentially activated in motor neuron death in Cu,Zn superoxide dismutase-mediated familial amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA97, 13901–13906 (2000). CASPubMed Google Scholar
Vukosavic, S. et al. Delaying caspase activation by Bcl-2: a clue to disease retardation in a transgenic mouse model of amyotrophic lateral sclerosis. J. Neurosci.20, 9119–9125 (2000). CASPubMed Google Scholar
Li, M. et al. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science288, 335–339 (2000). CASPubMed Google Scholar
Vukosavic, S., Dubois-Dauphin, M., Romero, N. & Przedborski, S. Bax and Bcl-2 intercation in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem.73, 2460–2468 (1999). CASPubMed Google Scholar
Bacman, S. R., Bradley, W. G. & Moraes, C. T. Mitochondrial involvement in amyotrophic lateral sclerosis: trigger or target? Mol. Neurobiol.33, 113–131 (2006). CASPubMed Google Scholar
Boston-Howes, W. et al. Caspase-3 cleaves and inactivates the glutamate transporter EAAT2. J. Biol. Chem.281, 14076–14084 (2006). CASPubMed Google Scholar
Guegan, C., Vila, M., Rosoklija, G., Hays, A. P. & Przedborski, S. Recruitment of the mitochondrial-dependent apoptotic pathway in amyotrophic lateral sclerosis. J. Neurosci.21, 6569–6576 (2001). CASPubMed Google Scholar
Rabizadeh, S. et al. Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells. Proc. Natl Acad. Sci. USA92, 3024–3028 (1995). CASPubMed Google Scholar
Alexianu, M. E., Kozovska, M. & Appel, S. H. Immune reactivity in a mouse model of familial ALS correlates with disease progression. Neurology57, 1282–1289 (2001). CASPubMed Google Scholar
Elliott, J. L. Cytokine upregulation in a murine model of familial amyotrophic lateral sclerosis. Brain Res. Mol. Brain Res.95, 172–178 (2001). CASPubMed Google Scholar
Almer, G. et al. Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Ann. Neurol.49, 176–185 (2001). CASPubMed Google Scholar
Hensley, K. et al. Primary glia expressing the G93A-SOD1 mutation present a neuroinflammatory phenotype and provide a cellular system for studies of glial inflammation. J. Neuroinflammation3, 2 (2006). PubMedPubMed Central Google Scholar
Raoul, C. et al. Motoneuron death triggered by a specific pathway downstream of Fas. potentiation by ALS-linked SOD1 mutations. Neuron35, 1067–1083 (2002). CASPubMed Google Scholar
Raoul, C. et al. Chronic activation in presymptomatic amyotrophic lateral sclerosis (ALS) mice of a feedback loop involving Fas, Daxx, and FasL. Proc. Natl Acad. Sci. USA103, 6007–6012 (2006). CASPubMed Google Scholar
Kikuchi, H. et al. Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc. Natl Acad. Sci. USA103, 6025–6030 (2006). CASPubMed Google Scholar
Urushitani, M. et al. Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nature Neurosci.9, 108–118 (2006). CASPubMed Google Scholar
Atsumi, T. The ultrastructure of intramuscular nerves in amyotrophic lateral sclerosis. Acta Neuropath.55, 193–198 (1981). CASPubMed Google Scholar
Afifi, A., Aleu, F., Goodgold, J. & MacKay, B. Ultrastructure of atrophic muscle in amyotrophic lateral sclerosis. Neurology16, 475–481 (1966). CASPubMed Google Scholar
Wiedemann, F. R. et al. Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J. Neurol. Sci.156, 65–72 (1998). CASPubMed Google Scholar
Siklos, L. et al. Ultrastructural evidence for altered calcium in motor nerve terminals in amyotrophic lateral sclerosis. Ann. Neurol.39, 203–216 (1996). CASPubMed Google Scholar
Higgins, C. M., Jung, C. & Xu, Z. ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes. BMC Neurosci.4, 16 (2003). PubMedPubMed Central Google Scholar
Kong, J. & Xu, Z. Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J. Neurosci.18, 3241–3250 (1998). CASPubMed Google Scholar
Bendotti, C. et al. Early vacuolization and mitochondrial damage in motor neurons of FALS mice are not associated with apoptosis or with changes in cytochrome oxidase histochemical reactivity. J. Neurol. Sci.191, 25–33 (2001). CASPubMed Google Scholar
Sasaki, S., Warita, H., Murakami, T., Abe, K. & Iwata, M. Ultrastructural study of mitochondria in the spinal cord of transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol. (Berl.)107, 461–474 (2004). Google Scholar
Rizzardini, M. et al. Neurodegeneration induced by complex I inhibition in a cellular model of familial amyotrophic lateral sclerosis. Brain Res. Bull.69, 465–474 (2006). CASPubMed Google Scholar
Jung, C., Higgins, C. M. & Xu, Z. Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis. J. Neurochem.83, 535–545 (2002). CASPubMed Google Scholar
Damiano, M. et al. Neural mitochondrial Ca2+ capacity impairment precedes the onset of motor symptoms in G93A Cu/Zn-superoxide dismutase mutant mice. J. Neurochem.96, 1349–1361 (2006). CASPubMed Google Scholar
Menzies, F. M. et al. Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain125, 1522–1533 (2002). PubMed Google Scholar
Klivenyi, P. et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nature Med.5, 347–350 (1999). CASPubMed Google Scholar
Zhu, S. et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature417, 74–78 (2002). CASPubMed Google Scholar
Higgins, C. M., Jung, C., Ding, H. & Xu, Z. Mutant Cu, Zn superoxide dismutase that causes motoneuron degeneration is present in mitochondria in the CNS. J. Neurosci.22, RC215 (2002). PubMed Google Scholar
Mattiazzi, M. et al. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J. Biol. Chem.277, 29626–29633 (2002). CASPubMed Google Scholar
Liu, J. et al. Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron43, 5–17 (2004). CASPubMed Google Scholar
Okado-Matsumoto, A. & Fridovich, I. Amyotrophic lateral sclerosis: a proposed mechanism. Proc. Natl Acad. Sci. USA99, 9010–9014 (2002). CASPubMed Google Scholar
Takeuchi, H. K., Ishigaki, Y., Doyu, S. M. & Sobue, G. Mitochondrial localization of mutant superoxide dismutase 1 triggers caspase-dependent cell death in a cellular model of familial amyotrophic lateral sclerosis. J. Biol. Chem.277, 50966–50972 (2002). CASPubMed Google Scholar
Bergemalm, D. et al. Overloading of stable and exclusion of unstable human superoxide dismutase-1 variants in mitochondria of murine amyotrophic lateral sclerosis models. J. Neurosci.26, 4147–4154 (2006). CASPubMed Google Scholar
Sasaki, S. & Iwata, M. Impairment of fast axonal transport in the proximal axons of anterior horn neurons in amyotrophic lateral sclerosis. Neurology47, 535–540 (1996). CASPubMed Google Scholar
Sasaki, S., Warita, H., Abe, K. & Iwata, M. Impairment of axonal transport in the axon hillock and the initial segment of anterior horn neurons in transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol. (Berl.)100, 48–56 (2005). Google Scholar
Zhang, B., Tu, P., Abtahian, F., Trojanowski, J. Q. & Lee, V. M. Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J. Cell Biol.139, 1307–1315 (1997). CASPubMedPubMed Central Google Scholar
Borchelt, D. R. et al. Axonal transport of mutant superoxide dismutase 1 and focal axonal abnormalities in the proximal axons of transgenic mice. Neurobiol. Dis.5, 27–35 (1998). CASPubMed Google Scholar
Williamson, T. & Cleveland, D. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutant to motor neurons. Nature Neurosci.1, 50–56 (1999). Google Scholar
Murakami, T. et al. Impaired retrograde axonal transport of adenovirus-mediated E. coli LacZ gene in the mice carrying mutant SOD1 gene. Neurosci. Lett.308, 149–152 (2001). CASPubMed Google Scholar
Rao, M. V. & Nixon, R. A. Defective neurofilament transport in mouse models of amyotrophic lateral sclerosis: a review. Neurochem. Res.28, 1041–1047 (2003). CASPubMed Google Scholar
Ligon L. A. et al. Mutant superoxide dismutase disrupts cytoplasmic dynein in motor neurons. Neuroreport16, 533–536 (2005). CASPubMed Google Scholar
Witherden, A. S. et al. An integrated genetic, radiation hybrid, physical and transcription map of a region of distal mouse chromosome 12, including an imprinted locus and the 'Legs at odd angles' (Loa) mutation. Gene283, 71–82 (2002). CASPubMed Google Scholar
Hafezparast, M. et al. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science300, 808–812 (2003). CASPubMed Google Scholar
LaMonte, B. H. et al. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron34, 715–727 (2002). CASPubMed Google Scholar
Kieran, D. et al. A mutation in dynein rescues axonal transport defects and extends the life span of ALS mice. J. Cell Biol.169, 561–567 (2005). CASPubMedPubMed Central Google Scholar
Teuchert, M. et al. A dynein mutation attenuates motor neuron degeneration in SOD1(G93A) mice. Exp. Neurol.198, 271–274 (2006). CASPubMed Google Scholar
Vande Velde, C., Garcia, M. L., Yin, X., Trapp, B. D. & Cleveland, D. W. The neuroprotective factor Wlds does not attenuate mutant SOD1-mediated motor neuron disease. Neuromolecular Med.5, 193–203 (2004). CASPubMed Google Scholar
Pigino, G. et al. Alzheimer's presenilin 1 mutations impair kinesin-based axonal transport. J. Neurosci.23, 4499–4508 (2003). CASPubMed Google Scholar
Morfini, G., Pigino, G., Beffert, U., Busciglio, J. & Brady, S. T. Fast axonal transport misregulation and Alzheimer's disease. Neuromolecular Med.2, 89–99 (2002). CASPubMed Google Scholar
Trushina, E. et al. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol. Cell Biol.24, 8195–8209 (2004). CASPubMedPubMed Central Google Scholar
Schmitt-John, T. et al. Mutation of Vps54 causes motor neuron disease and defective spermiogenesis in the wobbler mouse. Nature Genet.37, 1213–1215 (2005). CASPubMed Google Scholar
Rothstein, J., Kammen, M., Levey, A., Martin, L. & Kuncl, R. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol.38, 73–84 (1995). CASPubMed Google Scholar
Rothstein, J. D. et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann. Neurol.28, 18–25 (1990). CASPubMed Google Scholar
Rothstein, J. D., Martin, L. J. & Kuncl, R. W. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis [see comments]. N. Engl. J. Med.326, 1464–1468 (1992). CASPubMed Google Scholar
Arriza, J. L. et al. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J. Neurosci.14, 5559–5569 (1994). CAS Google Scholar
Arriza, J. L., Eliasof, S., Kavanaugh, M. P. & Amara, S. G. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc. Natl Acad. Sci. USA94, 4155–4160 (1997). CASPubMed Google Scholar
Fairman, W. A., Vandenberg, R. J., Arriza, J. L., Kavanaugh, M. P. & Amara, S. G. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature375, 599–603 (1995). CASPubMed Google Scholar
Trotti, D., Rolfs, A., Danbolt, N. C., Brown, R. H. Jr & Hediger, M. A. SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nature Neurosci2, 848 (1999). CASPubMed Google Scholar
Howland, D. S. et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc. Natl Acad. Sci. USA99, 1604–1609 (2002). CASPubMed Google Scholar
Lin, C. L. et al. Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron20, 589–602 (1998). CASPubMed Google Scholar
Aoki, M. et al. Mutations in the glutamate transporter EAAT2 gene do not cause abnormal EAAT2 transcripts in amyotrophic lateral sclerosis. Ann. Neurol.43, 645–653 (1998). CASPubMed Google Scholar
Trotti, D. et al. Amyotrophic lateral sclerosis-linked glutamate transporter mutant has impaired glutamate clearance capacity. J. Biol. Chem.276, 576–582 (2001). CASPubMed Google Scholar
Alexianu, M. E. et al. The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann. Neurol.36, 846–858 (1994). CASPubMed Google Scholar
Williams, D. N. C. & Ince, P. G. α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors: a molecular determinant of selective vulnerability in amyotrophic lateral sclerosis. Ann. Neurol.42, 200–207 (1997). CASPubMed Google Scholar
Ince, P. G., Shaw, P. J., Slade, J. Y., Jones, C. & Hudgson, P. Familial amyotrophic lateral sclerosis with a mutation in exon 4 of the Cu/Zn superoxide dismutase gene: pathological and immunocytochemical changes. Acta Neuropathol. (Berl.)92, 395–403 (1996). CAS Google Scholar
Pramatarova, A., Laganiere, J., Roussel, J., Brisebois, K. & Rouleau, G. A. Neuron specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor neuron impairment. J. Neurosci.21, 3369–3374 (2001). CASPubMed Google Scholar
Gong, Y. H., Parsadanian, A. S., Andreeva, A., Snider, W. D. & Elliott, J. L. Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J. Neurosci.20, 660–665 (2000). CASPubMed Google Scholar
Clement, A. M. et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science302, 113–117 (2003). Demonstrates the importance of non-neuronal cells in ALS pathogenesis. CASPubMed Google Scholar
Boillee, S. et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science312, 1389–1392 (2006). Elegantly highlights the importance of microglia for disease progression in transgenic ALS mice. CASPubMed Google Scholar
Wang, J. et al. Coincident thresholds of mutant protein for paralytic disease and protein aggregation caused by restrictively expressed superoxide dismutase cDNA. Neurobiol. Dis.20, 943–952 (2005). CASPubMed Google Scholar
Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell80, 155–165 (1995). CASPubMed Google Scholar
Mersiyanova, I. V. et al. A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. Am. J. Hum. Genet.67, 37–46 (2000). CASPubMedPubMed Central Google Scholar
Bomont, P. et al. The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nature Genet.26, 370–374 (2000). CASPubMed Google Scholar
Kuhlenbaumer, G. Giant axonal neuropathy (GAN): case report and two novel mutations in the gigaxonin gene. Neurology58, 1273–1276 (2002). CASPubMed Google Scholar
Zhao, C. et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bβ. Cell105, 587–597 (2001). CASPubMed Google Scholar
Zuchner, S. et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie-Tooth disease. Nature Genet.37, 289–294 (2005). PubMed Google Scholar
Zhao, X. et al. Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nature Genet.29, 326–331 (2001). CASPubMed Google Scholar
Verhoeven, K. et al. Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am. J. Hum. Genet.72, 722–727 (2003). CASPubMedPubMed Central Google Scholar
Patel, H. et al. SPG20 is mutated in Troyer syndrome, an hereditary spastic paraplegia. Nature Genet.31, 347–348 (2002). CASPubMed Google Scholar
Antonellis, A. et al. Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am. J. Hum. Genet.72, 1293–1299 (2003). CASPubMedPubMed Central Google Scholar
Jordanova, A. et al. Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nature Genet.38, 197–202 (2006). CASPubMed Google Scholar
Kalaydjieva, L. et al. N-myc downstream-regulated gene 1 is mutated in hereditary motor and sensory neuropathy-Lom. Am. J. Hum. Genet.67, 47–58 (2000). CASPubMedPubMed Central Google Scholar
Grohmann, K. et al. Mutations in the gene encoding immunoglobulin mubinding protein 2 cause spinal muscular atrophy with respiratory distress type 1. Nature Genet.29, 75–77 (2001). CASPubMed Google Scholar
Evgrafov, O. V. et al. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nature Genet.36, 602–606 (2004). CASPubMed Google Scholar
Irobi, J., De Jonghe, P. & Timmerman, V. Molecular genetics of distal hereditary motor neuropathies. Hum. Mol. Genet.13, R195–R202 (2004). CASPubMed Google Scholar
White, R. J. & Reynolds, I. J. Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J. Neurosci.16, 5688–5697 (1996). CASPubMed Google Scholar
Roa, B. B., Garcia, C. A. & Lupski, J. R. Charcot-Marie-Tooth disease type 1A: molecular mechanisms of gene dosage and point mutation underlying a common inherited peripheral neuropathy. Int. J. Neurol.25–26, 97–107 (1991). PubMed Google Scholar
Hayasaka, K. et al. De novo mutation of the myelin P0 gene in Dejerine-Sottas disease (hereditary motor and sensory neuropathy type III). Nature Genet.5, 266–268 (1993). CASPubMed Google Scholar
Street, V. A. et al. Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot-Marie-Tooth disease 1C. Neurology60, 22–26 (2003). CASPubMed Google Scholar
Warner, L. E. et al. Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nature Genet.18, 382–384 (1998). CASPubMed Google Scholar
Baxter, R. V. et al. Ganglioside-induced differentiation-associated protein-1 is mutant in Charcot-Marie-Tooth disease type 4A/8q21. Nature Genet.30, 21–22 (2002). CASPubMed Google Scholar
Bolino, A. et al. Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nature Genet.25, 17–19 (2000). CASPubMed Google Scholar
Senderek, J. et al. Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot-Marie-Tooth neuropathy type 4B2/11p15. Hum. Mol. Genet.12, 349–356 (2003). CASPubMed Google Scholar
Senderek, J. et al. Mutations in a gene encoding a novel SH3/TPR domain protein cause autosomal recessive Charcot-Marie-Tooth type 4C neuropathy. Am. J. Hum. Genet.73, 1106–1119 (2003). CASPubMedPubMed Central Google Scholar
Boerkoel, C. F. et al. Periaxin mutations cause recessive Dejerine-Sottas neuropathy. Am. J. Hum. Genet.68, 325–333 (2001). CASPubMed Google Scholar
Bergoffen, J. et al. Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science262, 2039–2042 (1993). CASPubMed Google Scholar
Bruijn, L. I. & Cudkowicz, M. Therapeutic targets for amyotrophic lateral sclerosis: current treatments and prospects for more effective therapies. Expert Rev. Neurother.6, 417–428 (2006). CASPubMed Google Scholar
Kaspar, B. K., Llado, J., Sherkat, N., Rothstein, J. D. & Gage, F. H. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science301, 839–842 (2003). Describes an effective therapy in ALS mice based on the delivery of insulin-like growth factor 1 (IGF1) to motor neurons via a retrogradely transported AAV2–IGF1 gene therapy vector. CASPubMed Google Scholar
Raoul, C. et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nature Med.11, 423–428 (2005). CASPubMed Google Scholar
Ralph, G. S. et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nature Med.11, 429–433 (2005). References 180 and 181 present compelling evidence that the process of motor neuron cell death in ALS mice can be slowed using inhibitory RNA to silence the offending, mutatedSOD1genes. CASPubMed Google Scholar
Ralph, G. S., Mazarakis, N. D. & Azzouz, M. Therapeutic gene silencing in neurological disorders, using interfering RNA. J. Mol. Med.83, 413–419 (2005). CASPubMed Google Scholar
Maxwell, M. M., Pasinelli, P., Kazantsev, A. G. & Brown, R. H. Jr. RNA interference-mediated silencing of mutant superoxide dismutase rescues cyclosporin A-induced death in cultured neuroblastoma cells. Proc. Natl Acad. Sci. USA101, 3178–3185 (2004). CASPubMed Google Scholar
Miller, T. M. et al. Virus-delivered small RNA silencing sustains strength in amyotrophic lateral sclerosis. Ann. Neurol.57, 773–776 (2005). CASPubMedPubMed Central Google Scholar
Smith, R. A. et al. Antisense oligonucleotide therapy for neurodegenerative disease. J. Clin. Invest.116, 2290–2296 (2006). CASPubMedPubMed Central Google Scholar
Wills, A. M. & Brown, R. H. Jr in Amyotrophic Lateral Sclerosis Ch. 14 (eds Brown, R. H. Jr, Swash, M. & Pasinelli, P.) 269–282 (Taylor & Francis, Abingdon, 2006). Google Scholar
Zuchner, S. et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature Genet.36, 449–451 (2004). PubMed Google Scholar
Zuchner, S. et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie-Tooth disease. Nature Genet.37, 289–294 (2005). PubMed Google Scholar
Verhoeven, K. et al. Slowed conduction and thin myelination of peripheral nerves associated with mutant rho Guanine-nucleotide exchange factor 10. Am. J. Hum. Genet.73, 926–932 (2003). CASPubMedPubMed Central Google Scholar
Bejaoui, K. et al. SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nature Genet.27, 261–262 (2001). CASPubMed Google Scholar
Grandchamp, B. et al. Tissue-specific splicing mutation in acute intermittent porphyria. Proc. Natl Acad. Sci. USA86, 661–664 (1989). CASPubMed Google Scholar
Goizet, C. et al. A new mutation of the lamin A/C gene leading to autosomal dominant axonal neuropathy, muscular dystrophy, cardiac disease, and leuconychia. J. Med. Genet.41, e29 (2004). CASPubMedPubMed Central Google Scholar
DeSandre-Giovannoli, A. et al. Homozygous defects in LMNa, encoding lamin A/C nuclear envelope proteins, cause autosomal recessive neuropathy in human (Charcot-Marie Tooth disorder, Type 2) and mouse. Am. J. Hum. Gen.70, 726–736 (2002). CAS Google Scholar
Howard, H. C. et al. The K–Cl cotransporter KCC3 is mutant in a severe peripheral neuropathy associated with agenesis of the corpus callosum. Nature Genet.32, 384–392 (2002). CASPubMed Google Scholar
Indo, Y. et al. Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nature Genet.13, 485–488 (1996). CASPubMed Google Scholar
Kihara, H., Fluharty, A. L., O'Brien, J. S. & Fish, C. H. Metachromatic leukodystrophy caused by a partial cerebroside sulfatase. Clin. Genet.21, 253–261 (1982). CASPubMed Google Scholar
Mihalik, S. J. et al. Identification of PAHX, a Refsum disease gene. Nature Genet.17, 185–189 (1997). CASPubMed Google Scholar
Anderson, S. L. et al. Familial dysautonomia is caused by mutations of the IKAP gene. Am. J. Hum. Genet.68, 753–758 (2001). CASPubMedPubMed Central Google Scholar
Rust, S. et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nature Genet.22, 352–355 (1999). CASPubMed Google Scholar
La Spada, A. R., Wilson, E. M., Luban, D. B., Harding, A. E. & Fischbeck, K. H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature352, 77–79 (1991). CASPubMed Google Scholar
Yamada, K. et al. Heterozygous mutations of the kinesin KIF21A in congenital fibrosis of the extraocular muscles type 1 (CFEOM1). Nature Genet.35, 318–321 (2003). CASPubMed Google Scholar
Takeda, K. et al. Fine assignment of β-hexosaminidase A α subunit on 15q23–24 by high resolution in situ hybridization. Tohoku J. Exp. Med.160, 203–211 (1990). CASPubMed Google Scholar
Windpassinger, C. et al. Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nature Genet.36, 271–276 (2004). CASPubMed Google Scholar
Hansen, J. J. et al. Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am. J. Hum. Genet.70, 1328–1332 (2002). CASPubMedPubMed Central Google Scholar
Reid, E. et al. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet.71, 1189–1194 (2002). CASPubMedPubMed Central Google Scholar
Rainier, S., Chai, J. H., Tokarz, D., Nicholls, R. D. & Fink, J. K. NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). Am. J. Hum. Genet.73, 967–971 (2003). CASPubMedPubMed Central Google Scholar
Hazan, J. et al. Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nature Genet.23, 296–303 (1999). CASPubMed Google Scholar
O'Neill, B. P., Swanson, J. W., Brown, F. R., Griffin, J. W. & Moser, H. W. Familial spastic paraparesis: an adrenoleukodystrophy phenotype? Neurology35, 1233–1235 (1985). CASPubMed Google Scholar
Simpson, M. A. et al. Maspardin is mutated in mast syndrome, a complicated form of hereditary spastic paraplegia associated with dementia. Am. J. Hum. Genet.73, 1147–1156 (2003). CASPubMedPubMed Central Google Scholar
Casari, G. et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell93, 973–983 (1998). CASPubMed Google Scholar
Touraine, R. L. et al. Neurological phenotype in Waardenburg syndrome type 4 correlates with novel SOX10 truncating mutations and expression in developing brain. Am. J. Hum. Genet.66, 1496–1503 (2000). CASPubMedPubMed Central Google Scholar
Jouet, M. et al. X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result in mutations in the L1 gene. Nature Genet.7, 402–407 (1994). CASPubMed Google Scholar
Saugier-Veber, P. et al. X-linked spastic paraplegia and Pelizaeus-Merzbacher disease are allelic disorders at the proteolipid protein locus. Nature Genet.6, 257–262 (1994). CASPubMed Google Scholar