Control of mental activities by internal models in the cerebellum (original) (raw)
References
Poon, C.-S. & Merfeld, D. M. Internal model: the state of art. J. Neural Eng.2 (2005).
Ito, M. Neurophysiological basis of the cerebellar motor control system. Int. J. Neurol.7, 162–176 (1970). CASPubMed Google Scholar
Ito, M. The Cerebellum and Neural Control (Raven, New York, 1984). Google Scholar
Kawato, M., Furukawa, K. & Suzuki, R. A hierarchical neural-network model for control and learning of voluntary movement. Biol. Cybern.57, 169–185 (1987). ArticleCASPubMed Google Scholar
Miall, R. C., Weir, D. J., Wolpert, D. M. & Stein, J. F. Is the cerebellum a Smith predictor? J. Motor Behav.25, 203–216 (1993). ArticleCAS Google Scholar
Wolpert, D. M. & Kawato, M. Multiple paired forward and inverse models for motor control. Neural Netw.11, 1317–1329 (1998). ArticleCASPubMed Google Scholar
Wolpert, D. M., Miall, R. C. & Kawato, M. Internal models in the cerebellum. Trends Cogn. Sci.2, 338–347 (1998). ArticleCASPubMed Google Scholar
Kawato, M. Cerebellum: models. In New Encyclopedia of Neuroscience (ed. Squire, L.) (Elsevier, in the press 2008). Google Scholar
Schmahmann, J. D. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J. Neuropsychiatry Clin. Neurosci.16, 367–378 (2004). ArticlePubMed Google Scholar
Leiner, H. C., Leiner, A. L. & Dow, R. S. Does the cerebellum contribute to mental skills? Behav. Neurosci.100, 443–454 (1986). ArticleCASPubMed Google Scholar
Leiner, H. C., Leiner, A. L. & Dow, R. S. Cognitive and language functions of the human cerebellum. Trends Neurosci.16, 444–447 (1993). ArticleCASPubMed Google Scholar
Sasaki, K., Kawaguchi, S., Oka, H., Sakai, M. & Mizuno, N. Electrophysiological studies on the cerebellocerebral projections in monkeys. Exp. Brain Res.24, 495–507 (1976). ArticleCASPubMed Google Scholar
Schmahmann, J. D. An emerging concept: the cerebellar contribution to higher function. Arch. Neurol.48, 1178–1187 (1991). ArticleCASPubMed Google Scholar
Ito, M. A new physiological concept on cerebellum. Rev. Neurol. (Paris)146, 564–569 (1990). CAS Google Scholar
Ito, M. in The Principles of Design and Operation of the Brain (Experimental Brain Research) (eds Eccles, J. C. & Creutzfeldt, O.) 281–292 (Springer, 1990). Google Scholar
Ito, M. Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci.16, 448–450 (1993). ArticleCASPubMed Google Scholar
Ito, M. in Cerebellum and Cognition (International Review of Neurobiology) (eds Schmahmann, J. D., Bradley, R. J., Adron Harris, R. & Jenner, P.) 475–487 (Academic, 1997). Google Scholar
Ito, M. Bases and implications of learning in the cerebellum – adaptive control and internal model mechanism. Prog. Brain Res.148, 95–109 (2006). Article Google Scholar
Vandervert, L. R., Schlimp, P. H. & Liu, H. How working memory and the cerebellum collaborate to produce creativity and innovation. Creativity Res. J.19, 1–18 (2007). Article Google Scholar
Wolpert, D. M., Doya, K. & Kawato, M. A unifying computational framework for motor control and social interaction. Philos. Trans. R. Soc. Lond. B Biol. Sci.358, 593–602 (2003). ArticlePubMedPubMed Central Google Scholar
Kelly, R. M. & Strick, P. L. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J. Neurosci.23, 8432–8444 (2003). ArticleCASPubMedPubMed Central Google Scholar
Dum, R. P. & Strick, P. L. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J. Neurophysiol.89, 634–639 (2003). ArticlePubMed Google Scholar
Clower, D. M., Dum, R. P. & Strick, P. L., Basal ganglia and cerebellar inputs to 'AIP'. Cereb. Cortex15, 913–920 (2005). ArticlePubMed Google Scholar
Fang, P.-C., Stepniewska, I. & Kaas, J. H. Ispilateral cortical connections of motor, premotor, frontal eye, and posterior parietal fields in a prosimian primate, Otalemur garnetti. J. Comp. Neurol.490, 305–333 (2005). ArticlePubMed Google Scholar
Ramnani, N. The primate cortico-cerebellar system: anatomy and function. Nature Rev. Neurosci.7, 511–522, (2006). ArticleCAS Google Scholar
Fiez, J. A., Raicle, M. E., Balota, D. A., Tallal, P. & Petersen, S. E. PET activation of posterior temporal regions during auditory word presentation and verb generation. Cereb. Cortex6, 1–10 (1996). ArticleCASPubMed Google Scholar
Hanakawa, T., Honda, M., Okada, T., Fukuyama, H. & Shibasaki, H. Neural correlates underlying mental calculation in abacus experts: a functional magnetic resonance imaging study. Neuroimage19, 296–307 (2003). ArticlePubMed Google Scholar
Baker, S. C. et al. Neural systems engaged by planning: a PET study of the Tower of London task. Neuropsychologia34, 515–526 (1996). ArticleCASPubMed Google Scholar
Ploghaus, A. et al. Learning about pain: the neural substrate of the prediction error for aversive events. Proc. Natl Acad. Sci. USA97, 9281–9286 (2000). ArticleCASPubMedPubMed Central Google Scholar
Allen, G. & Courchesne, E. Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of autism. Am. J. Psychiatry160, 262–273 (2003). ArticlePubMed Google Scholar
Schlosser, R. et al. Functional magnetic resonance imaging of human brain activity in a verbal fluency task. J. Neurol. Neurosurg. Psychiatr.64, 492–498 (1998). ArticleCAS Google Scholar
de Zubicaray, G. I. et al. Prefrontal cortex involvement in selective letter generation: a functional magnetic resonance imaging study. Cortex34, 389–401 (1998). ArticleCASPubMed Google Scholar
Desmond, J. E., Gabrieli, J. D. E., Wagner, A. D., Ginier, B. L. & Glove, G. H. Lobular patterns of cerebellar activation in verbal working memory and finger-tapping tasks as revealed by functional MRI. J. Neurosci.17, 9675–9685 (1997). ArticleCASPubMedPubMed Central Google Scholar
Hayter, A. L., Lamgton, D. W. & Ramnani, N. Cerebellar contributions to working memory. Neuroimage36, 943–954 (2007). ArticleCASPubMed Google Scholar
Nagahama, Y. et al. Cerebral activation during performance of a card sorting test. Brain119, 1667–1675 (1996). ArticlePubMed Google Scholar
Narita, H., Odawara, T., Iseki, E., Kosaka, K. & Hirayasu, Y. Psychomotor retardation correlates with frontal hypoperfusion and the Modified Stroop Test in patients with major depression under 60-years-old. Psychiat. Clin. Neurosci.58, 389–395 (2004). Article Google Scholar
Atherton, M., Zhung, J., Bart, W. M., Hu, X. & He, S. A functional MRI study of high-level cognition. I. The game of chess. Cogn. Brain Res.16, 26–31 (2003). Article Google Scholar
Chen, X., Zhang, D., Zhang, X., Li, Z. & Meng, X. A functional MRI study of high-level cognition. II. The game of GO. Cogn. Brain Res.16, 32–37 (2003). Article Google Scholar
Szpunar, K. K., Watson, J. M. & McDermott, K. B. Neural substrates of envisioning the future. Proc. Natl Acad. Sci. USA2, 642–647 (2007). Article Google Scholar
Collinson, S. L., Anthonisz, B., Courtenay, D. & Winter, C. Frontal executive impairment associated with paraneoplastic cerebellar degeneration: a case study. Neurocase12, 350–354 (2006). ArticlePubMed Google Scholar
Fiez, J. A., Petersen, S. E., Cheney, M. K. & Raichle, M. E. Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain115, 155–178 (1992). ArticlePubMed Google Scholar
Gebhart, A. L., Petersen, S. E & Thach, W. T. Role of the posterolateral cerebellum in language. Ann. NY Acad. Sci.978, 318–333 (2002). ArticlePubMed Google Scholar
Leggio, M. G., Silveri, M. C., Petrosini, L. & Molinari, M. Phonological grouping is specifically affected in cerebellar patients; a verbal fluency study. J. Neurol. Neurosurg. Psychiatr.69, 102–106 (2000). ArticleCAS Google Scholar
Nicolson, R. I., Daum, I., Schugens, M. M., Fawcett, A. J. & Schulz, A. Eyeblink conditioning indicates cerebellar abnormality in dyslexia. Exp. Brain Res.143, 42–50 (2002). ArticlePubMed Google Scholar
Stoodley, C. J., Fawcett, A. J., Nicolson, R. I. & Stein, J. F. Balancing and pointing tasks in dyslexic and control adults. Dyslexia12, 276–288 (2006). ArticlePubMed Google Scholar
Bigelow, N. O. et al. Prism adaptation in schizophrenia. Brain Cogn.61, 235–242 (2006). ArticlePubMed Google Scholar
Blakemore, S.-J., Smith, J., Steel, R., Johnstone, E. C. & Frith, C. D. The perception of self-produced sensory stimuli in patients with auditory hallucinations and passivity experiences: evidence for a breakdown in self-monitoring. Psychol. Med.30, 1131–1139 (2000). ArticleCASPubMed Google Scholar
Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci.24, 167–202 (2001). ArticleCASPubMed Google Scholar
Happaney, K., Zelazo, P. D. & Stuss, D. T. Development of orbitofrontal function: current theme and future directions. Brain Cogn.55, 1–10 (2004). ArticlePubMed Google Scholar
Baddeley, A. Working memory: looking back and looking forward. Nature Rev. Neurosci.4, 829–839 (2003). ArticleCAS Google Scholar
Baddeley, A. & Hitch, G. J. in Recent Advances in Learning and Motivation (ed. Bower, G. A.) 47–89 (Academic, New York, 1974). Google Scholar
Smith, E. E. & Jonides, J. Working memory: a view from neuroimaging. Cognit. Psychol.33, 5–42 (1997). ArticleCASPubMed Google Scholar
Stuss, D. T. & Knight, R. T. Principles of Frontal Lobe Function (Oxford Univ. Press, New York, 2002). Book Google Scholar
Baddeley, A. D. & Logie, R. H. in Models of Working Memory (eds Miyake, A. & Shah, P.) 28–61 (Cambridge Univ. Press, Cambridge, UK, 1999). Book Google Scholar
Craik, K. J. W. The Nature of Explanation (Cambridge Univ. Press, Cambridge, UK, 1943). Google Scholar
Johnson-Raird, P. N. Mental Models (Cambridge Univ. Press, 1983). Google Scholar
Held, C., Knauff, M. & Vosgerau, G. Mental Models and the Mind: Current Developments in Cognitive Psychology, Neuroscience, and Philosophy of Mind (Advances in Psychology) (Elsevier, 2006). Google Scholar
Tsunoda, K., Yamane, Y., Nishizaka, M. & Tanifuji, M. Complex objects are represented in the macaque inferotemporal cortex by the combination of feature columns. Nature Neurosci.4, 832–838 (2001). ArticleCASPubMed Google Scholar
Sheinberg., D. L. & Logothetis, N.K. The role of temporal areas in perceptual organization. Proc. Natl Acad. Sci. USA94, 3408–3413 (1997). ArticleCASPubMedPubMed Central Google Scholar
Tarok, L. & Srinivasan, R. Transient MEG frequency-tagging response induced by switching stimulus salience during binocular rivalry. (Abstr.) 201.9/BBB20 (Society for Neuroscience Annual Meeting, San Diego, 2007).
Kosslyn, S. M., Ganis, G. & Thompson, W. L. Neural foundations of imagery. Nature Rev. Neurosci.2, 635–642 (2001). ArticleCAS Google Scholar
Pearson, D., De Beni, R. & Cornoldi, C. in Imagery, Language and Visuo-Spatial Thinking (eds Denis, M., Logie, R. H., Cornoldi, C., De Vega, M. & Engelkamp, J.) 1–27 (Psychological Press, 2001). Google Scholar
Hesslow, G. Conscious thought as simulation of behaviour and perception. Trends Cogn. Sci.6, 242–247 (2002). ArticlePubMed Google Scholar
Le Bihan, D. et al. Activation of human primary visual cortex during visual recall: a magnetic resonance imaging study. Proc. Natl Acad. Sci. USA90, 11802–11805 (1993). ArticleCASPubMedPubMed Central Google Scholar
Miyashita, Y. Cognitive memory: cellular and network machineries and their top-down control. Science306, 435–440 (2004). ArticleCASPubMed Google Scholar
Hasegawa, I., Fukushima, T., Ihara, T. & Miyashita, Y. Callosal window between prefrontal cortices: cognitive interaction to retrieve long-term memory. Science281, 814–818 (1998). ArticleCASPubMed Google Scholar
Penfield, W. & Perot, P. The brain's record of auditory and visual experience; a final summary and discussion. Brain86, 595–696 (1963). ArticleCASPubMed Google Scholar
Fuster, J. M. The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (Raven, New York, 1997). Google Scholar
Ito, M. Cerebellar long-term depression: characterization, signal transduction and functional roles. Physiol. Rev.81, 1143–1195 (2001). ArticleCASPubMed Google Scholar
Ito, M. Cerebellar circuitry as a neuronal machine. Prog. Neurobiol.78, 272–303 (2006). ArticlePubMed Google Scholar
Ralston, D. D. Corticorubral synaptic organization in Macaca fascicularis: a study utilizing degeneration, anterograde transport of WGA-HRP, and combined immuno-GABA-gold technique and computer-assisted reconstruction. J. Comp. Neurol.350, 657–673 (1994). ArticleCASPubMed Google Scholar
Burman, K., Darian-Smith, C. & Darian-Smith, I. Macaque red nucleus: origins of spinal and olivary projections and terminations of cortical inputs. J. Comp. Neurol.423, 178–196 (2000). Google Scholar
Burman, K., Darian-Smith, C. & Darian-Smith, I. Geometry of rubrospinal, rubroolivary, and local circuit neurons in the macaque red nucleus. J. Comp. Neurol.423, 197–219, (2000). ArticleCASPubMed Google Scholar
Oka, H., Jinnai, K. & Yamamoto, T. The parieto-rubro-olivary pathway in the cat. Exp. Brain Res.37, 115–125 (1979). ArticleCASPubMed Google Scholar
Yttri, E., Smith, A., Reid, E. & Thach, W. T. Inactivation of parvocellular red nucleus impairs prism adaptation to and learning of contralateral gaze-reach shift. (Abstr.) 440.15/K8 (Society for Neuroscience Annual Meeting, Atlanta, 2006).
Schmahmann, J. D. & Pandya, D. N. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J. Comp. Neurol.289, 53–73 (1989). ArticleCASPubMed Google Scholar
Shidara, M., Kawano, M., Gomi, H. & Kawato, M. Inverse-dynamics encoding of eye movements by Purkinje cells in the cerebellum. Nature365, 50–52 (1993). ArticleCASPubMed Google Scholar
Miles, G. B., Cerminara, N. L. & Marple-Horvat, D. E. Purkinje cells in the lateral cerebellum of the cat encode visual events and target motion during visually guided reaching. J. Physiol.571, 619–637 (2006). ArticleCASPubMedPubMed Central Google Scholar
Pasalar, S., Roitman, A. V., Durfee, W. K. & Ebner, T. J. Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nature Neurosci.9, 1404–1411 (2006). ArticleCASPubMed Google Scholar
Yamamoto, K., Kawato, M., Kotosaka, S. & Kitazawa, S. Encoding of movement dynamics by Purkinje cell simple spike activity during fast arm movements under resistive and assistive force fields. J. Neurophysiol.97, 1588–1599 (2007). ArticlePubMed Google Scholar
Schmajuk, N. A., Lam, Y.-W. & Gray, J. A. Latent inhibition: a neural network approach. J. Exp. Psychol.22, 321–349 (1996). CAS Google Scholar
Lisman, J. E. & Grace, A. A. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron46, 703–713 (2005). ArticleCASPubMed Google Scholar
Miller, E. K., Erickson, C. A. & Desimone, R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci.16, 5154–5167 (1996). ArticleCASPubMedPubMed Central Google Scholar
Einstein, A. Letters a Maurice Solvince (Gauthier-Villars, Paris, 1956). Google Scholar
Spriner, S. P. & Deutsch, G. Left Brain, Right Brain: Perspectives on Cognitive Neuroscience 5th edn (Freeman, New York, 1998). Google Scholar
Diamond, A. Close interrelation of motor development and cognitive development and the cerebellum and prefrontal cortex. Child Develop.71, 44–56 (2000). ArticleCASPubMed Google Scholar
Carper, R. A. & Courchesne, E. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain123, 836–844 (2000). ArticlePubMed Google Scholar
Fetami, S. H. et al. Purkinje cell size is reduced in cerebellum of patients with autism. Cell. Mol. Neurosci.22, 171–175 (2002). Article Google Scholar
Lee, M. et al. Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain125, 1483–1495 (2002). ArticleCASPubMed Google Scholar
Sadakata, T. et al. Autistic-like phenotypes in Cadps 2-knockout mice and aberrant CADPS2 splicing in austistic patients. J. Clin. Invest.117, 931–943 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sadakata, T. et al. Impaired cerebellar development and function in mice lacking CAPS2, a protein involved in neurotrophin release. J. Neurosci.27, 2472–2482 (2007). ArticleCASPubMedPubMed Central Google Scholar
Deuel, R. K. Autism: a cognitive developmental riddle. Pediatr. Neurol.26, 349–357 (2002). ArticlePubMed Google Scholar
Ito, M. Nurturing the brain as an emerging research field involving child neurology. Brain Dev.26, 429–433 (2004). ArticlePubMed Google Scholar
Sperling, A. J., Lu, Z. L., Manis, F. R. & Seidenberg, M. S. Deficits in perceptual noise exclusion in developmental dyslexia. Nature Neurosci.8, 862–863 (2005). ArticleCASPubMed Google Scholar
Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F. & Geschwind, N. Developmental dyslexia: four consecutive patients with cortical anomalies. Ann. Neurol.18, 222–233 (1985). ArticleCASPubMed Google Scholar
Stein, J. & Walsh, V. To see but not to read: the magnocellular theory of dyslexia. Trends Neurosci.20, 147–152 (1997). ArticleCASPubMed Google Scholar
Blakemore, S.-J., Wolpert, D. M. & Frith, C. D. Central cancellation of self-produced tickle sensation. Nature Neurosci.1, 635–640 (1998). ArticleCASPubMed Google Scholar
Blakemore, S. J. & Sirigu, A. Action prediction in the cerebellum and in the parietal lobe. Exp. Brain Res.153, 239–245 (2003). ArticlePubMed Google Scholar
Solms, M. & Turnbull, O. The Brain and the Inner World. (OTHER, 2002). Google Scholar
Wegner, D. M. The Illusion of Conscious Will (MIT Press, Cambridge, Massachusetts, 2002). Book Google Scholar
Crick, F. & Koch, C. Towards a neurobiological theory of consciousness. Semin. Neurosci.2, 263–275 (1990). Google Scholar
Crick, F., Koch, C., Kreiman, G. & Fried, I. Consciousness and neurosurgery. Neurosurgery55, 273–282 (2004). ArticlePubMed Google Scholar
Barlow, J. S. The Cerebellum and Adaptive Control (Cambridge Univ. Press, New York, 2002). Book Google Scholar
Mauk, M. D. & Donegan, N. H. A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learn. Mem.4, 130–158 (1997). ArticleCASPubMed Google Scholar
Yamazaki, T. & Tanaka, S. Neural modeling of an internal clock. Neural Comput.17, 1–27 (2005). Article Google Scholar
Yamazaki, T. & Tanaka, S. The cerebellum as a liquid state machine. Neural Netw.20, 290–297 (2007). ArticlePubMed Google Scholar
Schweighofer, N., Doya, K. & Kuroda, S. Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Res. Rev.44, 103–116 (2004). ArticlePubMed Google Scholar
Nagao, S., Ito, M. & Karachot, L. Eye field in the cerebellar flocculus of pigmented rabbits determined with local electrical stimulation. Neurosci. Res.3, 39–51 (1985). ArticleCASPubMed Google Scholar
Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. Learn. Mem.10, 427–455 (2003). ArticlePubMed Google Scholar
Apps, R. & Garwicz, M. Anatomical and physiological foundations of cerebellar information processing. Nature Rev. Neurosci.6, 297–311 (2005). ArticleCAS Google Scholar
Riklan, M., Cullinan, T., Shulman, M. & Cooper, I. S. A psychometric study of chronic cerebellar stimulation in man. Biol. Psychiatry11, 543–574 (1976). CASPubMed Google Scholar
Koch, G. et al. Repetitive TMS of cerebellum interferes with millisecond time processing. Exp. Brain Res.179, 291–299 (2007). ArticlePubMed Google Scholar