Control of mental activities by internal models in the cerebellum (original) (raw)

References

  1. Poon, C.-S. & Merfeld, D. M. Internal model: the state of art. J. Neural Eng. 2 (2005).
  2. Ito, M. Neurophysiological basis of the cerebellar motor control system. Int. J. Neurol. 7, 162–176 (1970).
    CAS PubMed Google Scholar
  3. Ito, M. The Cerebellum and Neural Control (Raven, New York, 1984).
    Google Scholar
  4. Kawato, M., Furukawa, K. & Suzuki, R. A hierarchical neural-network model for control and learning of voluntary movement. Biol. Cybern. 57, 169–185 (1987).
    Article CAS PubMed Google Scholar
  5. Miall, R. C., Weir, D. J., Wolpert, D. M. & Stein, J. F. Is the cerebellum a Smith predictor? J. Motor Behav. 25, 203–216 (1993).
    Article CAS Google Scholar
  6. Wolpert, D. M. & Kawato, M. Multiple paired forward and inverse models for motor control. Neural Netw. 11, 1317–1329 (1998).
    Article CAS PubMed Google Scholar
  7. Wolpert, D. M., Miall, R. C. & Kawato, M. Internal models in the cerebellum. Trends Cogn. Sci. 2, 338–347 (1998).
    Article CAS PubMed Google Scholar
  8. Kawato, M. Cerebellum: models. In New Encyclopedia of Neuroscience (ed. Squire, L.) (Elsevier, in the press 2008).
    Google Scholar
  9. Schmahmann, J. D. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J. Neuropsychiatry Clin. Neurosci. 16, 367–378 (2004).
    Article PubMed Google Scholar
  10. Leiner, H. C., Leiner, A. L. & Dow, R. S. Does the cerebellum contribute to mental skills? Behav. Neurosci. 100, 443–454 (1986).
    Article CAS PubMed Google Scholar
  11. Leiner, H. C., Leiner, A. L. & Dow, R. S. Cognitive and language functions of the human cerebellum. Trends Neurosci. 16, 444–447 (1993).
    Article CAS PubMed Google Scholar
  12. Sasaki, K., Kawaguchi, S., Oka, H., Sakai, M. & Mizuno, N. Electrophysiological studies on the cerebellocerebral projections in monkeys. Exp. Brain Res. 24, 495–507 (1976).
    Article CAS PubMed Google Scholar
  13. Schmahmann, J. D. An emerging concept: the cerebellar contribution to higher function. Arch. Neurol. 48, 1178–1187 (1991).
    Article CAS PubMed Google Scholar
  14. Ito, M. A new physiological concept on cerebellum. Rev. Neurol. (Paris) 146, 564–569 (1990).
    CAS Google Scholar
  15. Ito, M. in The Principles of Design and Operation of the Brain (Experimental Brain Research) (eds Eccles, J. C. & Creutzfeldt, O.) 281–292 (Springer, 1990).
    Google Scholar
  16. Ito, M. Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci. 16, 448–450 (1993).
    Article CAS PubMed Google Scholar
  17. Ito, M. in Cerebellum and Cognition (International Review of Neurobiology) (eds Schmahmann, J. D., Bradley, R. J., Adron Harris, R. & Jenner, P.) 475–487 (Academic, 1997).
    Google Scholar
  18. Ito, M. Bases and implications of learning in the cerebellum – adaptive control and internal model mechanism. Prog. Brain Res. 148, 95–109 (2006).
    Article Google Scholar
  19. Vandervert, L. R., Schlimp, P. H. & Liu, H. How working memory and the cerebellum collaborate to produce creativity and innovation. Creativity Res. J. 19, 1–18 (2007).
    Article Google Scholar
  20. Wolpert, D. M., Doya, K. & Kawato, M. A unifying computational framework for motor control and social interaction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 593–602 (2003).
    Article PubMed PubMed Central Google Scholar
  21. Kelly, R. M. & Strick, P. L. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J. Neurosci. 23, 8432–8444 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  22. Dum, R. P. & Strick, P. L. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J. Neurophysiol. 89, 634–639 (2003).
    Article PubMed Google Scholar
  23. Clower, D. M., Dum, R. P. & Strick, P. L., Basal ganglia and cerebellar inputs to 'AIP'. Cereb. Cortex 15, 913–920 (2005).
    Article PubMed Google Scholar
  24. Fang, P.-C., Stepniewska, I. & Kaas, J. H. Ispilateral cortical connections of motor, premotor, frontal eye, and posterior parietal fields in a prosimian primate, Otalemur garnetti. J. Comp. Neurol. 490, 305–333 (2005).
    Article PubMed Google Scholar
  25. Ramnani, N. The primate cortico-cerebellar system: anatomy and function. Nature Rev. Neurosci. 7, 511–522, (2006).
    Article CAS Google Scholar
  26. Fiez, J. A., Raicle, M. E., Balota, D. A., Tallal, P. & Petersen, S. E. PET activation of posterior temporal regions during auditory word presentation and verb generation. Cereb. Cortex 6, 1–10 (1996).
    Article CAS PubMed Google Scholar
  27. Hanakawa, T., Honda, M., Okada, T., Fukuyama, H. & Shibasaki, H. Neural correlates underlying mental calculation in abacus experts: a functional magnetic resonance imaging study. Neuroimage 19, 296–307 (2003).
    Article PubMed Google Scholar
  28. Baker, S. C. et al. Neural systems engaged by planning: a PET study of the Tower of London task. Neuropsychologia 34, 515–526 (1996).
    Article CAS PubMed Google Scholar
  29. Ploghaus, A. et al. Learning about pain: the neural substrate of the prediction error for aversive events. Proc. Natl Acad. Sci. USA 97, 9281–9286 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  30. Allen, G. & Courchesne, E. Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of autism. Am. J. Psychiatry 160, 262–273 (2003).
    Article PubMed Google Scholar
  31. Schlosser, R. et al. Functional magnetic resonance imaging of human brain activity in a verbal fluency task. J. Neurol. Neurosurg. Psychiatr. 64, 492–498 (1998).
    Article CAS Google Scholar
  32. de Zubicaray, G. I. et al. Prefrontal cortex involvement in selective letter generation: a functional magnetic resonance imaging study. Cortex 34, 389–401 (1998).
    Article CAS PubMed Google Scholar
  33. Desmond, J. E., Gabrieli, J. D. E., Wagner, A. D., Ginier, B. L. & Glove, G. H. Lobular patterns of cerebellar activation in verbal working memory and finger-tapping tasks as revealed by functional MRI. J. Neurosci. 17, 9675–9685 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  34. Hayter, A. L., Lamgton, D. W. & Ramnani, N. Cerebellar contributions to working memory. Neuroimage 36, 943–954 (2007).
    Article CAS PubMed Google Scholar
  35. Nagahama, Y. et al. Cerebral activation during performance of a card sorting test. Brain 119, 1667–1675 (1996).
    Article PubMed Google Scholar
  36. Narita, H., Odawara, T., Iseki, E., Kosaka, K. & Hirayasu, Y. Psychomotor retardation correlates with frontal hypoperfusion and the Modified Stroop Test in patients with major depression under 60-years-old. Psychiat. Clin. Neurosci. 58, 389–395 (2004).
    Article Google Scholar
  37. Atherton, M., Zhung, J., Bart, W. M., Hu, X. & He, S. A functional MRI study of high-level cognition. I. The game of chess. Cogn. Brain Res. 16, 26–31 (2003).
    Article Google Scholar
  38. Chen, X., Zhang, D., Zhang, X., Li, Z. & Meng, X. A functional MRI study of high-level cognition. II. The game of GO. Cogn. Brain Res. 16, 32–37 (2003).
    Article Google Scholar
  39. Szpunar, K. K., Watson, J. M. & McDermott, K. B. Neural substrates of envisioning the future. Proc. Natl Acad. Sci. USA 2, 642–647 (2007).
    Article Google Scholar
  40. Collinson, S. L., Anthonisz, B., Courtenay, D. & Winter, C. Frontal executive impairment associated with paraneoplastic cerebellar degeneration: a case study. Neurocase 12, 350–354 (2006).
    Article PubMed Google Scholar
  41. Janssen, G. et al. Cerebellar mutism syndrome. Klin. Padiatr. 210, 243–247 (1998).
    Article CAS PubMed Google Scholar
  42. Fiez, J. A., Petersen, S. E., Cheney, M. K. & Raichle, M. E. Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain 115, 155–178 (1992).
    Article PubMed Google Scholar
  43. Gebhart, A. L., Petersen, S. E & Thach, W. T. Role of the posterolateral cerebellum in language. Ann. NY Acad. Sci. 978, 318–333 (2002).
    Article PubMed Google Scholar
  44. Leggio, M. G., Silveri, M. C., Petrosini, L. & Molinari, M. Phonological grouping is specifically affected in cerebellar patients; a verbal fluency study. J. Neurol. Neurosurg. Psychiatr. 69, 102–106 (2000).
    Article CAS Google Scholar
  45. Nicolson, R. I., Daum, I., Schugens, M. M., Fawcett, A. J. & Schulz, A. Eyeblink conditioning indicates cerebellar abnormality in dyslexia. Exp. Brain Res. 143, 42–50 (2002).
    Article PubMed Google Scholar
  46. Stoodley, C. J., Fawcett, A. J., Nicolson, R. I. & Stein, J. F. Balancing and pointing tasks in dyslexic and control adults. Dyslexia 12, 276–288 (2006).
    Article PubMed Google Scholar
  47. Bigelow, N. O. et al. Prism adaptation in schizophrenia. Brain Cogn. 61, 235–242 (2006).
    Article PubMed Google Scholar
  48. Blakemore, S.-J., Smith, J., Steel, R., Johnstone, E. C. & Frith, C. D. The perception of self-produced sensory stimuli in patients with auditory hallucinations and passivity experiences: evidence for a breakdown in self-monitoring. Psychol. Med. 30, 1131–1139 (2000).
    Article CAS PubMed Google Scholar
  49. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).
    Article CAS PubMed Google Scholar
  50. Happaney, K., Zelazo, P. D. & Stuss, D. T. Development of orbitofrontal function: current theme and future directions. Brain Cogn. 55, 1–10 (2004).
    Article PubMed Google Scholar
  51. Baddeley, A. Working memory: looking back and looking forward. Nature Rev. Neurosci. 4, 829–839 (2003).
    Article CAS Google Scholar
  52. Baddeley, A. & Hitch, G. J. in Recent Advances in Learning and Motivation (ed. Bower, G. A.) 47–89 (Academic, New York, 1974).
    Google Scholar
  53. Smith, E. E. & Jonides, J. Working memory: a view from neuroimaging. Cognit. Psychol. 33, 5–42 (1997).
    Article CAS PubMed Google Scholar
  54. Stuss, D. T. & Knight, R. T. Principles of Frontal Lobe Function (Oxford Univ. Press, New York, 2002).
    Book Google Scholar
  55. Baddeley, A. D. & Logie, R. H. in Models of Working Memory (eds Miyake, A. & Shah, P.) 28–61 (Cambridge Univ. Press, Cambridge, UK, 1999).
    Book Google Scholar
  56. Craik, K. J. W. The Nature of Explanation (Cambridge Univ. Press, Cambridge, UK, 1943).
    Google Scholar
  57. Johnson-Raird, P. N. Mental Models (Cambridge Univ. Press, 1983).
    Google Scholar
  58. Held, C., Knauff, M. & Vosgerau, G. Mental Models and the Mind: Current Developments in Cognitive Psychology, Neuroscience, and Philosophy of Mind (Advances in Psychology) (Elsevier, 2006).
    Google Scholar
  59. Tanaka, K. Inferotemporal cortex and object vision. Ann. Rev. Neurosci. 19, 109–139 (1996).
    Article CAS PubMed Google Scholar
  60. Tsunoda, K., Yamane, Y., Nishizaka, M. & Tanifuji, M. Complex objects are represented in the macaque inferotemporal cortex by the combination of feature columns. Nature Neurosci. 4, 832–838 (2001).
    Article CAS PubMed Google Scholar
  61. Sheinberg., D. L. & Logothetis, N.K. The role of temporal areas in perceptual organization. Proc. Natl Acad. Sci. USA 94, 3408–3413 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  62. Tarok, L. & Srinivasan, R. Transient MEG frequency-tagging response induced by switching stimulus salience during binocular rivalry. (Abstr.) 201.9/BBB20 (Society for Neuroscience Annual Meeting, San Diego, 2007).
  63. Kosslyn, S. M., Ganis, G. & Thompson, W. L. Neural foundations of imagery. Nature Rev. Neurosci. 2, 635–642 (2001).
    Article CAS Google Scholar
  64. Pearson, D., De Beni, R. & Cornoldi, C. in Imagery, Language and Visuo-Spatial Thinking (eds Denis, M., Logie, R. H., Cornoldi, C., De Vega, M. & Engelkamp, J.) 1–27 (Psychological Press, 2001).
    Google Scholar
  65. Hesslow, G. Conscious thought as simulation of behaviour and perception. Trends Cogn. Sci. 6, 242–247 (2002).
    Article PubMed Google Scholar
  66. Le Bihan, D. et al. Activation of human primary visual cortex during visual recall: a magnetic resonance imaging study. Proc. Natl Acad. Sci. USA 90, 11802–11805 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  67. Miyashita, Y. Cognitive memory: cellular and network machineries and their top-down control. Science 306, 435–440 (2004).
    Article CAS PubMed Google Scholar
  68. Hasegawa, I., Fukushima, T., Ihara, T. & Miyashita, Y. Callosal window between prefrontal cortices: cognitive interaction to retrieve long-term memory. Science 281, 814–818 (1998).
    Article CAS PubMed Google Scholar
  69. Penfield, W. & Perot, P. The brain's record of auditory and visual experience; a final summary and discussion. Brain 86, 595–696 (1963).
    Article CAS PubMed Google Scholar
  70. Fuster, J. M. The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (Raven, New York, 1997).
    Google Scholar
  71. Ito, M. Cerebellar long-term depression: characterization, signal transduction and functional roles. Physiol. Rev. 81, 1143–1195 (2001).
    Article CAS PubMed Google Scholar
  72. Ito, M. Cerebellar circuitry as a neuronal machine. Prog. Neurobiol. 78, 272–303 (2006).
    Article PubMed Google Scholar
  73. Ralston, D. D. Corticorubral synaptic organization in Macaca fascicularis: a study utilizing degeneration, anterograde transport of WGA-HRP, and combined immuno-GABA-gold technique and computer-assisted reconstruction. J. Comp. Neurol. 350, 657–673 (1994).
    Article CAS PubMed Google Scholar
  74. Burman, K., Darian-Smith, C. & Darian-Smith, I. Macaque red nucleus: origins of spinal and olivary projections and terminations of cortical inputs. J. Comp. Neurol. 423, 178–196 (2000).
    Google Scholar
  75. Burman, K., Darian-Smith, C. & Darian-Smith, I. Geometry of rubrospinal, rubroolivary, and local circuit neurons in the macaque red nucleus. J. Comp. Neurol. 423, 197–219, (2000).
    Article CAS PubMed Google Scholar
  76. Oka, H., Jinnai, K. & Yamamoto, T. The parieto-rubro-olivary pathway in the cat. Exp. Brain Res. 37, 115–125 (1979).
    Article CAS PubMed Google Scholar
  77. Yttri, E., Smith, A., Reid, E. & Thach, W. T. Inactivation of parvocellular red nucleus impairs prism adaptation to and learning of contralateral gaze-reach shift. (Abstr.) 440.15/K8 (Society for Neuroscience Annual Meeting, Atlanta, 2006).
  78. Schmahmann, J. D. & Pandya, D. N. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J. Comp. Neurol. 289, 53–73 (1989).
    Article CAS PubMed Google Scholar
  79. Shidara, M., Kawano, M., Gomi, H. & Kawato, M. Inverse-dynamics encoding of eye movements by Purkinje cells in the cerebellum. Nature 365, 50–52 (1993).
    Article CAS PubMed Google Scholar
  80. Miles, G. B., Cerminara, N. L. & Marple-Horvat, D. E. Purkinje cells in the lateral cerebellum of the cat encode visual events and target motion during visually guided reaching. J. Physiol. 571, 619–637 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  81. Pasalar, S., Roitman, A. V., Durfee, W. K. & Ebner, T. J. Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nature Neurosci. 9, 1404–1411 (2006).
    Article CAS PubMed Google Scholar
  82. Yamamoto, K., Kawato, M., Kotosaka, S. & Kitazawa, S. Encoding of movement dynamics by Purkinje cell simple spike activity during fast arm movements under resistive and assistive force fields. J. Neurophysiol. 97, 1588–1599 (2007).
    Article PubMed Google Scholar
  83. Schmajuk, N. A., Lam, Y.-W. & Gray, J. A. Latent inhibition: a neural network approach. J. Exp. Psychol. 22, 321–349 (1996).
    CAS Google Scholar
  84. Lisman, J. E. & Grace, A. A. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703–713 (2005).
    Article CAS PubMed Google Scholar
  85. Miller, E. K., Erickson, C. A. & Desimone, R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16, 5154–5167 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  86. Einstein, A. Letters a Maurice Solvince (Gauthier-Villars, Paris, 1956).
    Google Scholar
  87. Spriner, S. P. & Deutsch, G. Left Brain, Right Brain: Perspectives on Cognitive Neuroscience 5th edn (Freeman, New York, 1998).
    Google Scholar
  88. Diamond, A. Close interrelation of motor development and cognitive development and the cerebellum and prefrontal cortex. Child Develop. 71, 44–56 (2000).
    Article CAS PubMed Google Scholar
  89. Carper, R. A. & Courchesne, E. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain 123, 836–844 (2000).
    Article PubMed Google Scholar
  90. Fetami, S. H. et al. Purkinje cell size is reduced in cerebellum of patients with autism. Cell. Mol. Neurosci. 22, 171–175 (2002).
    Article Google Scholar
  91. Lee, M. et al. Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain 125, 1483–1495 (2002).
    Article CAS PubMed Google Scholar
  92. Sadakata, T. et al. Autistic-like phenotypes in Cadps 2-knockout mice and aberrant CADPS2 splicing in austistic patients. J. Clin. Invest. 117, 931–943 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  93. Sadakata, T. et al. Impaired cerebellar development and function in mice lacking CAPS2, a protein involved in neurotrophin release. J. Neurosci. 27, 2472–2482 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  94. Deuel, R. K. Autism: a cognitive developmental riddle. Pediatr. Neurol. 26, 349–357 (2002).
    Article PubMed Google Scholar
  95. Ito, M. Nurturing the brain as an emerging research field involving child neurology. Brain Dev. 26, 429–433 (2004).
    Article PubMed Google Scholar
  96. Sperling, A. J., Lu, Z. L., Manis, F. R. & Seidenberg, M. S. Deficits in perceptual noise exclusion in developmental dyslexia. Nature Neurosci. 8, 862–863 (2005).
    Article CAS PubMed Google Scholar
  97. Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F. & Geschwind, N. Developmental dyslexia: four consecutive patients with cortical anomalies. Ann. Neurol. 18, 222–233 (1985).
    Article CAS PubMed Google Scholar
  98. Stein, J. & Walsh, V. To see but not to read: the magnocellular theory of dyslexia. Trends Neurosci. 20, 147–152 (1997).
    Article CAS PubMed Google Scholar
  99. Blakemore, S.-J., Wolpert, D. M. & Frith, C. D. Central cancellation of self-produced tickle sensation. Nature Neurosci. 1, 635–640 (1998).
    Article CAS PubMed Google Scholar
  100. Blakemore, S. J. & Sirigu, A. Action prediction in the cerebellum and in the parietal lobe. Exp. Brain Res. 153, 239–245 (2003).
    Article PubMed Google Scholar
  101. Solms, M. & Turnbull, O. The Brain and the Inner World. (OTHER, 2002).
    Google Scholar
  102. Wegner, D. M. The Illusion of Conscious Will (MIT Press, Cambridge, Massachusetts, 2002).
    Book Google Scholar
  103. Crick, F. & Koch, C. Towards a neurobiological theory of consciousness. Semin. Neurosci. 2, 263–275 (1990).
    Google Scholar
  104. Crick, F., Koch, C., Kreiman, G. & Fried, I. Consciousness and neurosurgery. Neurosurgery 55, 273–282 (2004).
    Article PubMed Google Scholar
  105. Barlow, J. S. The Cerebellum and Adaptive Control (Cambridge Univ. Press, New York, 2002).
    Book Google Scholar
  106. Marr, D. A theory of cerebellar cortex. J. Physiol. 202, 437–470 (1969).
    Article CAS PubMed PubMed Central Google Scholar
  107. Albus, J. S. A theory of cerebellar function. Math. Biosci. 10, 25–61 (1971).
    Article Google Scholar
  108. Fujita, M. Adaptive filter model of the cerebellum. Biol. Cybern. 45, 195–206 (1982).
    Article CAS PubMed Google Scholar
  109. Mauk, M. D. & Donegan, N. H. A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learn. Mem. 4, 130–158 (1997).
    Article CAS PubMed Google Scholar
  110. Yamazaki, T. & Tanaka, S. Neural modeling of an internal clock. Neural Comput. 17, 1–27 (2005).
    Article Google Scholar
  111. Yamazaki, T. & Tanaka, S. The cerebellum as a liquid state machine. Neural Netw. 20, 290–297 (2007).
    Article PubMed Google Scholar
  112. Schweighofer, N., Doya, K. & Kuroda, S. Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Res. Rev. 44, 103–116 (2004).
    Article PubMed Google Scholar
  113. Nagao, S., Ito, M. & Karachot, L. Eye field in the cerebellar flocculus of pigmented rabbits determined with local electrical stimulation. Neurosci. Res. 3, 39–51 (1985).
    Article CAS PubMed Google Scholar
  114. Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. Learn. Mem. 10, 427–455 (2003).
    Article PubMed Google Scholar
  115. Apps, R. & Garwicz, M. Anatomical and physiological foundations of cerebellar information processing. Nature Rev. Neurosci. 6, 297–311 (2005).
    Article CAS Google Scholar
  116. Riklan, M., Cullinan, T., Shulman, M. & Cooper, I. S. A psychometric study of chronic cerebellar stimulation in man. Biol. Psychiatry 11, 543–574 (1976).
    CAS PubMed Google Scholar
  117. Koch, G. et al. Repetitive TMS of cerebellum interferes with millisecond time processing. Exp. Brain Res. 179, 291–299 (2007).
    Article PubMed Google Scholar

Download references