The parietal cortex and episodic memory: an attentional account (original) (raw)
References
Rugg, M. D. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 789–801 (MIT Press, Cambridge, Massachusetts, 1995). Google Scholar
Cabeza, R. & Nyberg, L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci.12, 1–47 (2000). CASPubMed Google Scholar
Cabeza, R. Role of posterior parietal regions in episodic memory retrieval: the dual attentional processes hypothesis. Neuropsychologia46, 1813–1827 (2008). PubMedPubMed Central Google Scholar
Ciaramelli, E., Grady, C. L. & Moscovitch, M. Top-down and bottom-up attention to memory: a hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia46, 1828–1851 (2008). PubMed Google Scholar
Rudge, P. & Warrington, E. K. Selective impairment of memory and visual perception in splenial tumours. Brain114, 349–360 (1991). PubMed Google Scholar
Valenstein, E. et al. Retrosplenial amnesia. Brain110, 1631–1646 (1987). PubMed Google Scholar
von Cramon, D. Y. & Schuri, U. The septo-hippocampal pathways and their relevance to human memory: a case report. Cortex28, 411–422 (1992). CASPubMed Google Scholar
Cavada, C. & Goldman-Rakic, P. S. Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol.287, 422–445 (1989). CASPubMed Google Scholar
Lewis, J. W. & van Essen, D. C. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol.428, 112–137 (2000). CASPubMed Google Scholar
Petrides, M. & Pandya, D. N. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Comp. Neurol.228, 105–116 (1984). CASPubMed Google Scholar
Petrides, M. & Pandya, D. N. Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur. J. Neurosci.11, 1011–1036 (1999). CASPubMed Google Scholar
Schmahmann, J. D. et al. Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain130, 630–653 (2007). Google Scholar
Kobayashi, Y. & Amaral, D. G. Macaque monkey retrosplenial cortex: II. Cortical afferents. J. Comp. Neurol.466, 48–79 (2003). PubMed Google Scholar
Morris, R., Pandya, D. N. & Petrides, M. Fiber system linking the mid-dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey. J. Comp. Neurol.407, 183–192 (1999). CASPubMed Google Scholar
Blatt, G. J., Pandya, D. N. & Rosene, D. L. Parcellation of cortical afferents to three distinct sectors in the parahippocampal gyrus of the rhesus monkey: an anatomical and neurophysiological study. J. Comp. Neurol.466, 161–179 (2003). PubMed Google Scholar
Clower, D. M., West, R. A., Lynch, J. C. & Strick, P. L. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J. Neurosci.21, 6283–6291 (2001). CASPubMed Google Scholar
Insausti, R. & Munoz, M. Cortical projections of the non-entorhinal hippocampal formation in the cynomolgus monkey (Macaca fascicularis). Eur. J. Neurosci.14, 435–451 (2001). CASPubMed Google Scholar
Lavenex, P., Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. J. Comp. Neurol.447, 394–420 (2002). PubMed Google Scholar
Munoz, M. & Insausti, R. Cortical efferents of the entorhinal cortex and the adjacent parahippocampal region in the monkey (Macaca fascicularis). Eur. J. Neurosci.22, 1368–1388 (2005). PubMed Google Scholar
Rockland, K. S. & Van Hoesen, G. W. Some temporal and parietal cortical connections converge in CA1 of the primate hippocampus. Cereb. Cortex9, 232–237 (1999). CASPubMed Google Scholar
Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J. Comp. Neurol.350, 497–533 (1994). CASPubMed Google Scholar
Vincent, J. L. et al. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J. Neurophysiol.96, 3517–3531 (2006). PubMed Google Scholar
Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nature Rev. Neurosci.3, 201–215 (2002). This article introduces an influential cognitive-neuroscience model of attention that distinguishes between a dorsal frontoparietal system that mediates top-down attention and a ventral frontoparietal system that mediates bottom-up attention. The AtoM model proposed in this article extends the dorsal–ventral distinction in the parietal cortex to the episodic retrieval domain. CAS Google Scholar
Milner, A. D. & Goodale, M. A. The visual brain in action (Oxford Univ. Press, New York, 1995). Google Scholar
Mishkin, M., Ungerleider, L. G. & Macko, K. A. Object vision and spatial vision: two cortical pathways. Trends Neurosci.6, 414–417 (1983). Google Scholar
Posner, M. I. & Petersen, S. E. The attention system of the human brain. Annu. Rev. Neurosci.13, 25–42 (1990). CASPubMed Google Scholar
Bisiach, E. & Luzzatti, C. Unilateral neglect of representational space. Cortex14, 129–133 (1978). CASPubMed Google Scholar
Danckert, J. & Ferber, S. Revisiting unilateral neglect. Neuropsychologia44, 987–1006 (2006). PubMed Google Scholar
Driver, J. & Vuilleumier, P. Perceptual awareness and its loss in unilateral neglect and extinction. Cognition79, 39–88 (2001). CASPubMed Google Scholar
Vallar, G. Spatial hemineglect in humans. Trends Cogn. Sci.2, 87–97 (1998). CASPubMed Google Scholar
Pavani, F., Ladavas, E. & Driver, J. Auditory and multisensory aspects of visuospatial neglect. Trends Cogn. Sci.7, 407–414 (2003). PubMed Google Scholar
Driver, J. & Mattingley, J. B. Parietal neglect and visual awareness. Nature Neurosci.1, 17–22 (1998). CASPubMed Google Scholar
Critchley, M. The Parietal lobes (Arnold, London, 1953). Google Scholar
Berryhill, M. E., Phuong, L., Picasso, L., Cabeza, R. & Olson, I. R. Parietal lobe and episodic memory: bilateral damage causes impaired free recall of autobiographical memory. J. Neurosci.27, 14415–14423 (2007). This study reported the first evidence of significant deficits in episodic-memory retrieval following parietal lesions. Consistent with the AtoM model, patients with bilateral ventral parietal lesions showed a deficit in spontaneously reporting details in their autobiographical memories but could provide these details when probed. CASPubMed Google Scholar
Davidson, P. S. R. et al. Does lateral parietal cortex support episodic memory? Evidence from focal lesion patients. Neuropsychologia46, 1743–1755 (2008). This study demonstrated that patients with unilateral parietal lesions show deficits in experiencing recollection, even when they show normal source-memory performance when tested with specific probes. This pattern is consistent with the AtoM model. PubMedPubMed Central Google Scholar
Yonelinas, A. P. The nature of recollection and familiarity: a review of 30 years of research. J. Mem. Lang.46, 441–517 (2002). Google Scholar
Simons, J. S. et al. Is the parietal lobe necessary for recollection in humans? Neuropsychologia46, 1185–1191 (2008). This study showed that unilateral parietal lesions, which overlap with regions that are activated during source-memory tasks, do not significantly impair source-memory performance. PubMed Google Scholar
Haramati, S., Soroker, N., Dudai, Y. & Levy, D. A. The posterior parietal cortex in recognition memory: a neuropsychological study. Neuropsychologia46, 1756–1766 (2008). This study investigated patients with lesions that included the parietal cortex. Patients with left-hemisphere lesions were not impaired in recognition memory for words, pictures and sounds. PubMed Google Scholar
Rossi, S. et al. Prefrontal and parietal cortex in human episodic memory: an interference study by repetitive transcranial magnetic stimulation. Eur. J. Neurosci.23, 793–800 (2006). This study did not find a significant effect of TMS stimulation on episodic-retrieval performance. PubMed Google Scholar
Kapur, S. et al. Functional role of the prefrontal cortex in retrieval of memories: a PET study. Neuroreport6, 1880–1884 (1995). CASPubMed Google Scholar
Tulving, E. et al. Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition. Proc. Natl Acad. Sci. USA91, 2012–2015 (1994). CASPubMed Google Scholar
Schacter, D. L., Alpert, N. M., Savage, C. R., Rauch, S. L. & Albert, M. S. Conscious recollection and the human hippocampal formation: evidence from positron emission tomography. Proc. Natl Acad. Sci. USA93, 321–325 (1996). CASPubMed Google Scholar
Fletcher, P. C. et al. The mind's eye—precuneus activation in memory related imagery. Neuroimage2, 195–200 (1995). CASPubMed Google Scholar
Buckner, R. L., Raichle, M. E., Miezin, F. M. & Petersen, S. E. PET studies of the recall of pictures and words from memory. Abstr. Soc. Neurosci.21, 1441 (1995). Google Scholar
Moscovitch, M., Kapur, S., Köhler, S. & Houle, S. Distinct neural correlates of visual long-term memory for spatial location and object identity: a positron emission tomography (PET) study in humans. Proc. Natl Acad. Sci. USA92, 3721–3725 (1995). CASPubMed Google Scholar
Cabeza, R. et al. Brain regions differentially involved in remembering what and when: a PET study. Neuron19, 863–870 (1997). CASPubMed Google Scholar
Buckner, R. L. et al. Functional-anatomic study of episodic retrieval. II. Selective averaging of event-related fMRI trials to test the retrieval success hypothesis. Neuroimage7, 163–175 (1998). CASPubMed Google Scholar
Konishi, S., Wheeler, M. E., Donaldson, D. I. & Buckner, R. L. Neural correlates of episodic retrieval success. Neuroimage12, 276–286 (2000). CASPubMed Google Scholar
Rugg, M. D. & Henson, R. N. A. in The Cognitive Neuroscience of Memory Encoding and Retrieval (eds Parker, A. E., Wilding, E. L. & Bussey, T.) 3–37 (Psychology Press, Hove, 2002). Google Scholar
Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y. & Engle, S. A. Remembering episodes: a selective role for the hippocampus during retrieval. Nature Neurosci.3, 1149–1152 (2000). CASPubMed Google Scholar
Henson, R. N. A., Rugg, M. D., Shallice, T., Josephs, O. & Dolan, R. J. Recollection and familiarity in recognition memory: an event-related functional magnetic resonance imaging study. J. Neurosci.19, 3962–3972 (1999). CASPubMed Google Scholar
Wheeler, M. A. & Buckner, R. L. Functional dissociation among components of remembering: control, perceived oldness, and content. J. Neurosci.23, 3869–3880 (2003). This article introduced the perceived-oldness hypothesis of parietal contributions to episodic retrieval. CASPubMed Google Scholar
Kahn, I., Davachi, L. & Wagner, A. D. Functional-neuroanatomic correlates of recollection: implications for models of recognition memory. J. Neurosci.24, 4172–4180 (2004). CASPubMed Google Scholar
Dobbins, I. G., Foley, H., Schacter, D. L. & Wagner, A. D. Executive control during episodic retrieval: multiple prefrontal processes subserve source memory. Neuron35, 989–996 (2002). CASPubMed Google Scholar
Dobbins, I. G., Rice, H. J., Wagner, A. D. & Schacter, D. L. Memory orientation and success: separable neurocognitive components underlying episodic recognition. Neuropsychologia41, 318–333 (2003). PubMed Google Scholar
Dobbins, I. G. & Wagner, A. D. Domain-general and domain-sensitive prefrontal mechanisms for recollecting events and detecting novelty. Cereb. Cortex15, 1768–1778 (2005). PubMed Google Scholar
Wagner, A., Shannon, B., Kahn, I. & Buckner, R. Parietal lobe contributions to episodic memory retrieval. Trends Cogn. Sci.9, 445–453 (2005). This article reviews fMRI evidence of and theoretical accounts about the role of the parietal cortex in episodic retrieval. PubMed Google Scholar
Baddeley, A. Working memory: looking back and looking forward. Nature Rev. Neurosci.4, 829–839 (2003). CAS Google Scholar
Vilberg, K. L. & Rugg, M. D. Memory retrieval and the parietal cortex: a review of evidence from event-related fMRI. Neuropsychologia46, 1787–1799 (2008). This article includes a meta-analysis of fMRI activations during episodic retrieval and attributes the role of the ventral parietal cortex to a working-memory module known as the episodic buffer. PubMedPubMed Central Google Scholar
Wheeler, M. E. & Buckner, R. L. Functional-anatomic correlates of remembering and knowing. Neuroimage21, 1337–1349 (2004). Using the remember–know paradigm, this fMRI study demonstrated that recollection engages ventral parietal regions, whereas familiarity engages more dorsal parietal regions. PubMed Google Scholar
Yonelinas, A. P., Otten, L. J., Shaw, K. N. & Rugg, M. D. Separating the brain regions involved in recollection and familiarity in recognition memory. J. Neurosci.25, 3002–3008 (2005). CASPubMed Google Scholar
Daselaar, S. M., Fleck, M. S. & Cabeza, R. E. Triple dissociation in the medial temporal lobes: recollection, familiarity, and novelty. J. Neurophysiol.96, 1902–1911 (2006). CASPubMed Google Scholar
Kim, H. & Cabeza, R. Trusting our memories: dissociating the neural correlates of confidence in veridical vs. illusory memories. J. Neurosci.27, 12190–12197 (2007). CASPubMed Google Scholar
Moritz, S., Glascher, J., Sommer, T., Buchel, C. & Braus, D. F. Neural correlates of memory confidence. Neuroimage33, 1188–1193 (2006). PubMed Google Scholar
Skinner, E. L. & Fernandes, M. A. Neural correlates of recollection and familiarity: a review of neuroimaging and patient data. Neuropsychologia45, 2163–2179 (2007). PubMed Google Scholar
Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P. & Shulman, G. L. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neurosci.3, 292–297 (2000). CASPubMed Google Scholar
Clark, V. P., Fannon, S., Lai, S., Benson, R. & Bauer, L. Responses to rare visual target and distractor stimuli using event-related fMRI. J. Neurophysiol.83, 3133–3139 (2000). CASPubMed Google Scholar
Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. A multimodal cortical network for the detection of changes in the sensory environment. Nature Neurosci.3, 277–283 (2000). CASPubMed Google Scholar
Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study. Neuroimage14, 1256–1267 (2001). CASPubMed Google Scholar
Kiehl, K. A., Laurens, K. R., Duty, T. L., Forster, B. B. & Liddle, P. F. Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. Psychophysiology38, 133–142 (2001). CASPubMed Google Scholar
Marois, R., Leung, H. C. & Gore, J. C. A stimulus-driven approach to object identity and location processing in the human brain. Neuron25, 717–728 (2000). CASPubMed Google Scholar
Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L. & Snyder, A. Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cereb. Cortex11, 825–836 (2001). CASPubMed Google Scholar
Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron58, 306–324 (2008). CASPubMedPubMed Central Google Scholar
Cabeza, R. et al. Attention-related activity during episodic memory retrieval: a cross-function fMRI study. Neuropsychologia41, 390–399 (2003). PubMed Google Scholar
Serences, J. T. et al. Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychol. Sci.16, 114–122 (2005). PubMed Google Scholar
Shulman, G. L., Ollinger, J. M., Linenweber, M., Petersen, S. E. & Corbetta, M. Multiple neural correlates of detection in the human brain. Proc. Natl Acad. Sci. USA98, 313–318 (2001). CASPubMed Google Scholar
Milner, B. Interhemispheric differences in the localization of psychological processes in man. Br. Med. Bull.27, 272–277 (1971). CASPubMed Google Scholar
Arrington, C. M., Carr, T. H., Mayer, A. R. & Rao, S. M. Neural mechanisms of visual attention: object-based selection of a region in space. J. Cogn. Neurosci.12, 106–117 (2000). PubMed Google Scholar
Kincade, J. M., Abrams, R. A., Astafiev, S. V., Shulman, G. L. & Corbetta, M. An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. J. Neurosci.25, 4593–4604 (2005). CASPubMed Google Scholar
Henson, R. N. A., Rugg, M. D., Shallice, T. & Dolan, R. J. Confidence in recognition memory for words: dissociating right prefrontal roles in episodic retrieval. J. Cogn. Neurosci.12, 913–923 (2000). CASPubMed Google Scholar
Fleck, M. S., Daselaar, S. M., Dobbins, I. G. & Cabeza, R. Role of prefrontal and anterior cingulate regions in decision-making processes shared by memory and nonmemory tasks. Cereb. Cortex16, 1623–1630 (2006). PubMed Google Scholar
Prince, S. E., Tsukiura, T., Daselaar, S. M. & Cabeza, R. Distinguishing the neural correlates of episodic memory encoding and semantic memory retrieval. Psychol. Sci.18, 144–151 (2007). PubMed Google Scholar
Thompson-Schill, S. L., D'Esposito, M., Aguirre, G. K. & Farah, M. J. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc. Natl Acad. Sci. USA94, 14792–14797 (1997). CASPubMed Google Scholar
Baddeley, A. The episodic buffer: a new component of working memory? Trends Cogn. Sci.4, 417–423 (2000). CASPubMed Google Scholar
Rotello, C. M. & Heit, E. Two-process models of recognition memory: evidence for recall-to-reject? J. Mem. Lang.40, 432–453 (1999). Google Scholar
Moscovitch, M. Memory and working-with-memory: a component process model based on modules and central systems. J. Cogn. Neurosci.4, 257–267 (1992). CASPubMed Google Scholar
Moscovitch, M. in Memory Systems (eds Schacter, D. L. & Tulving, E.) 269–310 (MIT Press, Cambridge, Massachusetts, 1994). Google Scholar
Jacoby, L. L., Woloshyn, V. & Kelley, C. M. Becoming famous without being recognized: unconscious influences of memory produced by divided attention. J. Exp. Psychol. Gen.118, 115–125 (1989). Google Scholar
Kane, M. J. & Engle, R. W. Working-memory capacity, proactive interference, and divided attention: limits on long-term memory retrieval. J. Exp. Psychol. Learn. Mem. Cogn.26, 336–358 (2000). CASPubMed Google Scholar
Moscovitch, M. Cognitive resources and dual-task interference effects at retrieval in normal people: the role of the frontal lobes and medial temporal cortex. Neuropsychology8, 524–534 (1994). Google Scholar
Craik, F. I. M., Govoni, R., Naveh-Benjamin, M. & Anderson, N. D. The effects of divided attention on encoding and retrieval processes in human memory. J. Exp. Psychol. Gen.125, 159–180 (1996). CASPubMed Google Scholar
Fernandes, M. A. & Moscovitch, M. Divided attention and memory: evidence of substantial interference effects at retrieval and encoding. J. Exp. Psychol. Gen.129, 155–176 (2000). CASPubMed Google Scholar
Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L. & Raichle, M. E. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl Acad. Sci. USA103, 10046–10051 (2006). CASPubMed Google Scholar
Donaldson, D. I., Petersen, S. E. & Buckner, R. L. Dissociating memory retrieval processes using fMRI: evidence that priming does not support recognition memory. Neuron31, 1047–1059 (2001). CASPubMed Google Scholar
Donaldson, D. I., Petersen, S. E., Ollinger, J. M. & Buckner, R. L. Dissociating state and item components of recognition memory using fMRI. Neuroimage13, 129–142 (2001). CASPubMed Google Scholar
Henson, R. N., Hornberger, M. & Rugg, M. D. Further dissociating the processes involved in recognition memory: an fMRI study. J. Cogn. Neurosci.17, 1058–1073 (2005). PubMed Google Scholar
Herron, J. E., Henson, R. N. & Rugg, M. D. Probability effects on the neural correlates of retrieval success: an fMRI study. Neuroimage21, 302–310 (2004). PubMed Google Scholar
Maratos, E. J., Dolan, R. J., Morris, J. S., Henson, R. N. & Rugg, M. D. Neural activity associated with episodic memory for emotional context. Neuropsychologia39, 910–920 (2001). CASPubMed Google Scholar
McDermott, K. B., Jones, T. C., Petersen, S. E., Lageman, S. K. & Roediger, H. L. Retrieval success is accompanied by enhanced activation in anterior prefrontal cortex during recognition memory: an event-related fMRI study. J. Cogn. Neurosci.12, 965–976 (2000). CASPubMed Google Scholar
Ragland, J. D. et al. Event-related fMRI of frontotemporal activity during word encoding and recognition in schizophrenia. Am. J. Psychiatry161, 1004–1015 (2004). PubMedPubMed Central Google Scholar
Ragland, J. D., Valdez, J. N., Loughead, J., Gur, R. C. & Gur, R. E. Functional magnetic resonance imaging of internal source monitoring in schizophrenia: recognition with and without recollection. Schizophr. Res.87, 160–171 (2006). PubMedPubMed Central Google Scholar
Shannon, B. J. & Buckner, R. L. Functional-anatomical correlates of memory retrieval that suggest nontraditional processing roles for multiple distinct regions within posterior neocortex. J. Neurosci.24, 10084–10092 (2004). CASPubMed Google Scholar
Tsukiura, T., Mochizuki-Kawai, K. & Fujii, T. The effect of encoding strategies on medial temporal lobe activations during the recognition of words: an event-related fMRI study. Neuroimage25, 452–461 (2005). PubMed Google Scholar
von Zerssen, G. C., Mecklinger, A., Opitz, B. & von Cramon, D. J. Conscious recollection and illusory recognition: an event-related fMRI study. Eur. J. Neurosci.13, 2148–2156 (2001). CASPubMed Google Scholar
Leube, D. T., Erb, M., Grodd, W., Bartels, M. & Kircher, T. T. Successful episodic memory retrieval of newly learned faces activates a left fronto-parietal network. Cogn. Brain Res.18, 97–101 (2003). Google Scholar
Leveroni, C. L. et al. Neural systems underlying the recognition of familiar and newly learned faces. J. Neurosci.20, 878–886 (2000). CASPubMed Google Scholar
Weis, S., Klaver, P., Reul, J., Elger, C. E. & Fernandez, G. Temporal and cerebellar brain regions that support both declarative memory formation and retrieval. Cereb. Cortex14, 256–267 (2004). PubMed Google Scholar
Tulving, E. Memory and consciousness. Can. Psychol.25, 1–12 (1985). Google Scholar
Fenker, D. B., Schott, B. H., Richardson-Klavehn, A., Heinze, H. J. & Duzel, E. Recapitulating emotional context: activation of amygdala, hippocampus and fusiform cortex during recollection and familiarity. Eur. J. Neurosci.21, 1993–1999 (2005). PubMed Google Scholar
Montaldi, D., Spencer, T. J., Roberts, N. & Mayes, A. R. The neural system that mediates familiarity memory. Hippocampus16, 504–520 (2006). PubMed Google Scholar
Johnson, J. D. & Rugg, M. D. Recollection and the reinstatement of encoding-related cortical activity. Cereb. Cortex17, 2507–2515 (2007). PubMed Google Scholar
Vilberg, K. L. & Rugg, M. D. Dissociation of the neural correlates of recognition memory according to familiarity, recollection, and amount of recollected information. Neuropsychologia45, 2216–2225 (2007). PubMedPubMed Central Google Scholar
Woodruff, C. C., Johnson, J. D., Uncapher, M. R. & Rugg, M. D. Content-specificity of the neural correlates of recollection. Neuropsychologia43, 1022–1032 (2005). PubMed Google Scholar
Sharot, T., Delgado, M. R. & Phelps, E. A. How emotion enhances the feeling of remembering. Nature Neurosci.7, 1376–1380 (2004). CASPubMed Google Scholar
Cansino, S., Marquet, P., Dolan, R. J. & Rugg, M. D. Brain activity underlying encoding and retrieval of source memory. Cereb. Cortex12, 1048–1056 (2002). PubMed Google Scholar
Kensinger, E. A. & Schacter, D. L. Neural processes underlying memory attribution on a reality-monitoring task. Cereb. Cortex16, 1126–1133 (2006). PubMed Google Scholar
Iidaka, T., Matsumoto, A., Nogawa, J., Yamamoto, Y. & Sadato, N. Frontoparietal network involved in successful retrieval from episodic memory. Spatial and temporal analyses using fMRI and ERP. Cereb. Cortex16, 1349–1360 (2006). PubMed Google Scholar
Daselaar, S. M., Fleck, M. S., Dobbins, I. G., Madden, D. J. & Cabeza, R. Effects of healthy aging on hippocampal and rhinal memory functions: an event-related fMRI study. Cereb. Cortex16, 1771–1782 (2006). PubMedPubMed Central Google Scholar
Chua, E. F., Schacter, D. L., Rand-Giovannetti, E. & Sperling, R. A. Understanding metamemory: neural correlates of the cognitive process and subjective level of confidence in recognition memory. Neuroimage29, 1150–1160 (2006). PubMed Google Scholar