Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease (original) (raw)
Trevelyan, A. J. & Watkinson, O. Does inhibition balance excitation in neocortex? Prog. Biophys. Mol. Biol.87, 109–143 (2005). PubMed Google Scholar
Lujan, R., Maylie, J. & Adelman, J. P. New sites of action for GIRK and SK channels. Nature Rev. Neurosci.10, 475–480 (2009). CAS Google Scholar
Yamada, M., Inanobe, A. & Kurachi, Y. G protein regulation of potassium ion channels. Pharmacol. Rev.50, 723–757 (1998). CASPubMed Google Scholar
Pfaffinger, P. J., Martin, J. M., Hunter, D. D., Nathanson, N. M. & Hille, B. GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature317, 536–538 (1985). CASPubMed Google Scholar
Logothetis, D. E., Kurachi, Y., Galper, J., Neer, E. J. & Clapham, D. E. The βγ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature325, 321–326 (1987). CASPubMed Google Scholar
Wickman, K. D. et al. Recombinant G-protein βγ-subunits activate the muscarinic-gated atrial potassium channel. Nature368, 255–257 (1994). CASPubMed Google Scholar
Reuveny, E. et al. Activation of the cloned muscarinic potassium channel by G protein βγ subunits. Nature370, 143–146 (1994). References 6 and 7 show that Gbg subunits activate GIRK channels, providing new evidence to resolve the G protein debate. CASPubMed Google Scholar
Inanobe, A. et al. Gβγ directly binds to the carboxyl terminus of the G protein-gated muscarinic K+ channel, GIRK1. Biochem. Biophys. Res. Commun.212, 1022–1028 (1995). CASPubMed Google Scholar
Huang, C. L., Slesinger, P. A., Casey, P. J., Jan, Y. N. & Jan, L. Y. Evidence that direct binding of Gβγ to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron15, 1133–1143 (1995). CASPubMed Google Scholar
Wickman, K., Karschin, C., Karschin, A., Picciotto, M. R. & Clapham, D. E. Brain localization and behavioral impact of the G-protein-gated K+ channel subunit GIRK4. J. Neurosci.20, 5608–5615 (2000). CASPubMedPubMed Central Google Scholar
Lesage, F. et al. Molecular properties of neuronal G-protein-activated inwardly rectifying K+ channels. J. Biol. Chem.270, 28660–28667 (1995). CASPubMed Google Scholar
Isomoto, S. et al. A novel ubiquitously distributed isoform of GIRK2 (GIRK2B) enhances GIRK1 expression of the G-protein-gated K+ current in Xenopus oocytes. Biochem. Biophys. Res. Commun.218, 286–291 (1996). CASPubMed Google Scholar
Inanobe, A. et al. Molecular cloning and characterization of a novel splicing variant of the Kir3.2 subunit predominantly expressed in mouse testis. J. Physiol.521, 19–30 (1999). CASPubMedPubMed Central Google Scholar
Lesage, F. et al. Cloning provides evidence for a family of inward rectifier and G-protein coupled K+ channels in the brain. FEBS Lett.353, 37–42 (1994). CASPubMed Google Scholar
Wei, J. et al. Characterization of murine Girk2 transcript isoforms: structure and differential expression. Genomics51, 379–390 (1998). CASPubMed Google Scholar
Stoffel, M. et al. Cloning of rat KATP-2 channel and decreased expression in pancreatic islets of male Zucker diabetic fatty rats. Biochem. Biophys. Res. Commun.212, 894–899 (1995). CASPubMed Google Scholar
Bond, C. T. et al. Cloning and functional expression of the cDNA encoding an inwardly-rectifying potassium channel expressed in pancreatic β-cells and in the brain. FEBS Lett.367, 61–66 (1995). CASPubMed Google Scholar
Nelson, C. S., Marino, J. L. & Allen, C. N. Cloning and characterization of Kir3.1 (GIRK1) C-terminal alternative splice variants. Brain Res. Mol. Brain Res.46, 185–196 (1997). CASPubMed Google Scholar
Liao, Y. J., Jan, Y. N. & Jan, L. Y. Heteromultimerization of G-protein-gated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain. J. Neurosci.16, 7137–7150 (1996). CASPubMedPubMed Central Google Scholar
Jelacic, T. M., Kennedy, M. E., Wickman, K. & Clapham, D. E. Functional and biochemical evidence for G-protein-gated inwardly rectifying K+ (GIRK) channels composed of GIRK2 and GIRK3. J. Biol. Chem.275, 36211–36216 (2000). CASPubMed Google Scholar
Tucker, S. J., Pessia, M. & Adelman, J. P. Muscarine-gated K+ channel: subunit stoichiometry and structural domains essential for G protein stimulation. Am. J. Physiol.271, H379–H385 (1996). CASPubMed Google Scholar
Slesinger, P. A. et al. Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K+ channels. Neuron16, 321–331 (1996). CASPubMed Google Scholar
Kofuji, P., Davidson, N. & Lester, H. A. Evidence that neuronal G-protein-gated inwardly rectifying K+ channels are activated by Gβγ subunits and function as heteromultimers. Proc. Natl Acad. Sci. USA92, 6542–6546 (1995). CASPubMedPubMed Central Google Scholar
Krapivinsky, G. et al. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature374, 135–141 (1995). CASPubMed Google Scholar
Jelacic, T. M., Sims, S. M. & Clapham, D. E. Functional expression and characterization of G-protein-gated inwardly rectifying K+ channels containing GIRK3. J. Membr. Biol.169, 123–129 (1999). CASPubMed Google Scholar
Labouèbe, G. et al. RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area. Nature Neurosci.12, 1559–1568 (2007). This paper shows that the 'club drug' GHB downregulates RGS2 in VTA dopaminergic neurons, which reduces the rewarding properties of GHB through altered GABAB–GIRK signalling. Google Scholar
Lüscher, C., Jan, L. Y., Stoffel, M., Malenka, R. C. & Nicoll, R. A. G-protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic, but not presynaptic transmitter actions in hippocampal neurons. Neuron19, 687–695 (1997). PubMed Google Scholar
Koyrakh, L. et al. Molecular and cellular diversity of neuronal G-protein-gated potassium channels. J. Neurosci.25, 11468–11478 (2005). CASPubMedPubMed Central Google Scholar
Torrecilla, M. et al. G-protein-gated potassium channels containing Kir3.2 and Kir3.3 subunits mediate the acute inhibitory effects of opioids on locus ceruleus neurons. J. Neurosci.22, 4328–4334 (2002). CASPubMedPubMed Central Google Scholar
Cruz, H. G. et al. Absence and rescue of morphine withdrawal in GIRK/Kir3 knock-out mice. J. Neurosci.28, 4069–4077 (2008). CASPubMedPubMed Central Google Scholar
Marker, C. L., Lujan, R., Colon, J. & Wickman, K. Distinct populations of spinal cord lamina II interneurons expressing G-protein-gated potassium channels. J. Neurosci.26, 12251–12259 (2006). CASPubMedPubMed Central Google Scholar
Slesinger, P. A., Stoffel, M., Jan, Y. N. & Jan, L. Y. Defective γ-aminobutyric acid type B receptor-activated inwardly rectifying K+ currents in cerebellar granule cells isolated from weaver and Girk2 null mutant mice. Proc. Natl Acad. Sci. USA94, 12210–12217 (1997). CASPubMedPubMed Central Google Scholar
Pravetoni, M. & Wickman, K. Behavioral characterization of mice lacking GIRK/Kir3 channel subunits. Genes Brain Behav.7, 523–531 (2008). CASPubMed Google Scholar
Kozell, L. B., Walter, N. A., Milner, L. C., Wickman, K. & Buck, K. J. Mapping a barbiturate withdrawal locus to a 0.44 Mb interval and analysis of a novel null mutant identify a role for Kcnj9 (GIRK3) in withdrawal from pentobarbital, zolpidem, and ethanol. J. Neurosci.29, 11662–11673 (2009). This paper documents a search for genes in a quantitative trait locus associated with withdrawal. Mice containing a knockout of one these genes,Girk3, exhibit less severe withdrawal from sedatives. CASPubMedPubMed Central Google Scholar
Morgan, A. D., Carroll, M. E., Loth, A. K., Stoffel, M. & Wickman, K. Decreased cocaine self-administration in Kir3 potassium channel subunit knockout mice. Neuropsychopharmacology28, 932–938 (2003). CASPubMed Google Scholar
Slesinger, P. A., Reuveny, E., Jan, Y. N. & Jan, L. Y. Identification of structural elements involved in G protein gating of the GIRK1 potassium channel. Neuron15, 1145–1156 (1995). CASPubMed Google Scholar
Nemec, J., Wickman, K. & Clapham, D. E. Gβγ binding increases the open time of IKACh: kinetic evidence for multiple Gβγ binding sites. Biophys. J.76, 246–252 (1999). CASPubMedPubMed Central Google Scholar
Ivanova-Nikolova, T. T. & Breitwieser, G. E. Effector contributions to Gβγ-mediated signaling as revealed by muscarinic potassium channel gating. J. Gen. Physiol.109, 245–253 (1997). CASPubMedPubMed Central Google Scholar
Ma, D. et al. Diverse trafficking patterns due to multiple traffic motifs in G protein-activated inwardly rectifying potassium channels from brain and heart. Neuron33, 715–729 (2002). CASPubMed Google Scholar
Lunn, M.-L. et al. A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction. Nature Neurosci.10, 1249–1259 (2007). CASPubMed Google Scholar
Inanobe, A. et al. Characterization of G-protein-gated K+ channels composed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra. J. Neurosci.19, 1006–1017 (1999). CASPubMedPubMed Central Google Scholar
Nehring, R. B. et al. Neuronal inwardly rectifying K+ channels differentially couple to PDZ proteins of the PSD-95/SAP90 family. J. Neurosci.20, 156–162 (2000). CASPubMedPubMed Central Google Scholar
Cruz, H. G. et al. Bi-directional effects of GABAB receptor agonists on the mesolimbic dopamine system. Nature Neurosci.7, 153–159 (2004). CASPubMed Google Scholar
Sui, J. L., Chan, K. W. & Logothetis, D. E. Na+ activation of the muscarinic K+ channel by a G-protein-independent mechanism. J. Gen. Physiol.108, 381–391 (1996). CASPubMed Google Scholar
Ho, I. H. & Murrell-Lagnado, R. D. Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. J. Biol. Chem.274, 8639–8648 (1999). CASPubMed Google Scholar
Aryal, P., Dvir, H., Choe, S. & Slesinger, P. A. A discrete alcohol pocket involved in GIRK channel activation. Nature Neurosci.12, 988–995 (2009). CASPubMed Google Scholar
Kobayashi, T. et al. Ethanol opens G-protein-activated inwardly rectifying K+ channels. Nature Neurosci.2, 1091–1097 (1999). CASPubMed Google Scholar
Lewohl, J. M. et al. G-protein-coupled inwardly rectifying potassium channels are targets of alcohol action. Nature Neurosci.2, 1084–1090 (1999). References 46–48 show that alcohol activates GIRK channels through a discrete alcohol pocket in the channel. CASPubMed Google Scholar
Mullner, C. et al. Heterologous facilitation of G protein-activated K+ channels by β-adrenergic stimulation via cAMP-dependent protein kinase. J. Gen. Physiol.115, 547–558 (2000). CASPubMedPubMed Central Google Scholar
Medina, I. et al. A switch mechanism for Gβγ activation of IKACh . J. Biol. Chem.275, 29709–29716 (2000). CASPubMed Google Scholar
Sharon, D., Vorobiov, D. & Dascal, N. Positive and negative coupling of the metabotropic glutamate receptors to a G protein-activated K+ channel, GIRK, in Xenopus oocytes. J. Gen. Physiol.109, 477–490 (1997). CASPubMedPubMed Central Google Scholar
Stevens, E. B., Shah, B. S., Pinnock, R. D. & Lee, K. Bombesin receptors inhibit G protein-coupled inwardly rectifying K+ channels expressed in Xenopus oocytes through a protein kinase C-dependent pathway. Mol. Pharmacol.55, 1020–1027 (1999). CASPubMed Google Scholar
Leaney, J. L., Dekker, L. V. & Tinker, A. Regulation of a G protein-gated inwardly rectifying K+ channel by a Ca2+-independent protein kinase C. J. Physiol.534, 367–379 (2001). CASPubMedPubMed Central Google Scholar
Mao, J. et al. Molecular basis for the inhibition of G protein-coupled inward rectifier K+ channels by protein kinase C. Proc. Natl Acad. Sci. USA101, 1087–1092 (2004). CASPubMedPubMed Central Google Scholar
Lei, Q., Talley, E. M. & Bayliss, D. A. Receptor-mediated inhibition of G protein-coupled inwardly rectifying potassium channels involves Gαq family subunits, phospholipase C, and a readily diffusable messenger. J. Biol. Chem.276, 16720–16730 (2001). CASPubMed Google Scholar
Sohn, J. W. et al. Receptor-specific inhibition of GABAB-activated K+ currents by muscarinic and metabotropic glutamate receptors in immature rat hippocampus. J. Physiol.580, 411–422 (2007). CASPubMedPubMed Central Google Scholar
Witkowski, G., Szulczyk, B., Rola, R. & Szulczyk, P. D1 dopaminergic control of G protein-dependent inward rectifier K+ (GIRK)-like channel current in pyramidal neurons of the medial prefrontal cortex. Neuroscience155, 53–63 (2008). CASPubMed Google Scholar
Lopes, C. M. et al. Alterations in conserved Kir channel–PIP2 interactions underlie channelopathies. Neuron34, 933–944 (2002). CASPubMed Google Scholar
Huang, C.-L., Feng, S. & Hilgemann, D. W. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature391, 803–806 (1998). CASPubMed Google Scholar
Zhang, H., He, C., Yan, X., Mirshahi, T. & Logothetis, D. E. Activation of inwardly rectifying K+ channels by distinct Ptdlns(4,5)P2 interactions. Nature Cell Biol.1, 183–188 (1999). CASPubMed Google Scholar
Kobrinsky, E., Mirshahi, T., Zhang, H., Jin, T. & Logothetis, D. E. Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K+-current desensitization. Nature Cell Biol.2, 507–514 (2000). CASPubMed Google Scholar
Cho, H., Nam, G.-B., Lee, S. H., Earm, Y. E. & Ho, W.-K. Phosphatidylinositol 4,5-bisphosphate is acting as a signal molecule in α1-adrenergic pathway via the modulation of acetylcholine-activated K+ channels in mouse atrial myocytes. J. Biol. Chem.276, 159–164 (2001). CASPubMed Google Scholar
Meyer, T. et al. Depletion of phosphatidylinositol 4,5-bisphosphate by activation of phospholipase C-coupled receptors causes slow inhibition but not desensitization of G protein-gated inward rectifier K+ current in atrial myocytes. J. Biol. Chem.276, 5650–5658 (2001). CASPubMed Google Scholar
Nishida, M. & MacKinnon, R. Structural basis of inward rectification. Cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 Å resolution. Cell111, 957–965 (2002). CASPubMed Google Scholar
Pegan, S. et al. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nature Neurosci.8, 279–287 (2005). CASPubMed Google Scholar
Inanobe, A., Matsuura, T., Nakagawa, A. & Kurachi, Y. Structural diversity in the cytoplasmic region of G protein-gated inward rectifier K+ channels. Channels1, 39–45 (2007). PubMed Google Scholar
Chang, H. K., Marton, L. J., Liang, K. K. & Shieh, R. C. K+ binding in the G-loop and water cavity facilitates Ba2+ movement in the Kir2.1 channel. Biochim. Biophys. Acta1788, 500–506 (2009). CASPubMed Google Scholar
Ma, D., Tang, X. D., Rogers, T. B. & Welling, P. A. An andersen-Tawil syndrome mutation in Kir2.1 (V302M) alters the G-loop cytoplasmic K+ conduction pathway. J. Biol. Chem.282, 5781–5789 (2007). CASPubMed Google Scholar
Tao, X., Avalos, J. L., Chen, J. & MacKinnon, R. Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 Å resolution. Science326, 1668–1674 (2009). CASPubMedPubMed Central Google Scholar
Xu, Y., Shin, H.-G., Szep, S. & Lu, Z. Physical determinants of strong voltage sensitivity of K+ channel block. Nature Struct. Mol. Biol.16, 1252–1258 (2009). CAS Google Scholar
Pegan, S., Arrabit, C., Slesinger, P. A. & Choe, S. Andersen's syndrome mutation effects on the structure and assembly of the cytoplasmic domains of Kir2.1. Biochemistry45, 8599–8606 (2006). CASPubMed Google Scholar
Nishida, M., Cadene, M., Chait, B. T. & MacKinnon, R. Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J.26, 4005–4015 (2007). This paper and references 64–66 provide the first set of high-resolution crystal structures of mammalian inwardly rectifying channels, giving a new toolbox for determining the molecular mechanisms that underlie channel gating. CASPubMedPubMed Central Google Scholar
Kuo, A. et al. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science300, 1922–1926 (2003). CASPubMed Google Scholar
Osawa, M. et al. Evidence for the direct interaction of spermine with the inwardly rectifying potassium channel. J. Biol. Chem.284, 26117–26126 (2009). CASPubMedPubMed Central Google Scholar
Kunkel, M. T. & Peralta, E. G. Identification of domains conferring G protein regulation on inward rectifier potassium channels. Cell83, 443–449 (1995). CASPubMed Google Scholar
Huang, C. L., Jan, Y. N. & Jan, L. Y. Binding of the G protein βγ subunit to multiple regions of G protein-gated inward-rectifying K+ channels. FEBS Lett.405, 291–298 (1997). CASPubMed Google Scholar
He, C., Zhang, H., Mirshahi, T. & Logothetis, D. E. Identification of a potassium channel site that interacts with G protein βγ subunits to mediate agonist-induced signaling. J. Biol. Chem.274, 12517–12524 (1999). CASPubMed Google Scholar
He, C. et al. Identification of critical residues controlling G protein-gated inwardly rectifying K+ channel activity through interactions with the βγ subunits of G proteins. J. Biol. Chem.277, 6088–6096 (2002). CASPubMed Google Scholar
Krapivinsky, G. et al. Gβγ binding to GIRK4 subunit is critical for G protein-gated K+ channel activation. J. Biol. Chem.273, 16946–16952 (1998). CASPubMed Google Scholar
Ivanina, T. et al.. Mapping the Gβγ-binding sites in GIRK1 and GIRK2 subunits of the G protein-activated K+ channel. J. Biol. Chem.278, 29174–29183 (2003). CASPubMed Google Scholar
Finley, M., Arrabit, C., Fowler, C., Suen, K. F. & Slesinger, P. A. βL-βM loop in the C-terminal domain of GIRK channels is important for Gβγ activation. J. Physiol.555, 643–657 (2004). CASPubMedPubMed Central Google Scholar
Rubinstein, M. et al. Divergent regulation of GIRK1 and GIRK2 subunits of the neuronal G protein gated K+ channel by GαiGDP and Gβγ. J. Physiol.587, 3473–3491 (2009). CASPubMedPubMed Central Google Scholar
Kawano, T. et al. Interaction of Gαq and Kir3, G protein-coupled inwardly rectifying potassium channels. Mol. Pharmacol.71, 1179–1184 (2007). CASPubMed Google Scholar
Clancy, S. et al. Pertussis-toxin-sensitive Gα subunits selectively bind to C-terminal domain of neuronal GIRK channels: evidence for a heterotrimeric G-protein-channel complex. Mol. Cell. Neurosci.28, 375–389 (2005). CASPubMed Google Scholar
Peleg, S., Varon, D., Ivanina, T., Dessauer, C. W. & Dascal, N. Gαi controls the gating of the G protein-activated K+ channel, GIRK. Neuron33, 87–99 (2002). CASPubMed Google Scholar
Sarac, R. et al. Mutation of critical GIRK subunit residues disrupts N- and C-termini association and channel function. J. Neurosci.25, 1836–1846 (2005). CASPubMedPubMed Central Google Scholar
Riven, I., Kalmanzon, E., Segev, L. & Reuveny, E. Conformational rearrangements associated with the gating of the G protein-coupled potassium channel revealed by FRET microscopy. Neuron38, 225–235 (2003). CASPubMed Google Scholar
Yi, B. A., Lin, Y., Jan, Y. N. & Jan, L. Y. Yeast screen for constitutively active mutant G protein-activated potassium channels. Neuron29, 657–667 (2001). CASPubMed Google Scholar
Sadja, R., Smadja, K., Alagem, N. & Reuveny, E. Coupling Gβγ-dependent activation to channel opening via pore elements in inwardly rectifying potassium channels. Neuron29, 669–680 (2001). CASPubMed Google Scholar
Jin, T. et al. The βγ subunits of G proteins gate a K+ channel by pivoted bending of a transmembrane segment. Mol. Cell10, 469–481 (2002). CASPubMed Google Scholar
Rosenhouse-Dantsker, A. et al. A sodium-mediated structural switch that controls the sensitivity of Kir channels to PtdIns(4,5)P2 . Nature Chem. Biol.4, 624–631 (2008). CAS Google Scholar
Riven, I., Iwanir, S. & Reuveny, E. GIRK channel activation involves a local rearrangement of a preformed G protein channel complex. Neuron51, 561–573 (2006). In this paper, TIRF microscopy is used to investigate the interaction of G proteins with GIRK channels. The Gαβγ heterotrimer is shown to associate with the channel at rest, supporting the concept of a macromolecular signalling complex. CASPubMed Google Scholar
David, M. et al. Interactions between GABA-B1 receptors and Kir3 inwardly rectifying potassium channels. Cell. Signal.18, 2172–2181 (2006). CASPubMed Google Scholar
Nobles, M., Benians, A. & Tinker, A. Heterotrimeric G proteins precouple with G protein-coupled receptors in living cells. Proc. Natl Acad. Sci. USA102, 18706–18711 (2005). CASPubMedPubMed Central Google Scholar
Nikolov, E. N. & Ivanova-Nikolova, T. T. Coordination of membrane excitability through a GIRK1 signaling complex in the atria. J. Biol. Chem.279, 23630–23636 (2004). CASPubMed Google Scholar
Lavine, N. et al. G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J. Biol. Chem.277, 46010–46019 (2002). CASPubMed Google Scholar
Lober, R. M., Pereira, M. A. & Lambert, N. A. Rapid activation of inwardly rectifying potassium channels by immobile G-protein-coupled receptors. J. Neurosci.26, 12602–12608 (2006). CASPubMedPubMed Central Google Scholar
Schreibmayer, W. et al. Inhibition of an inwardly rectifying K+ channel by G-protein α-subunits. Nature380, 624–627 (1996). CASPubMed Google Scholar
Ivanina, T. et al. Gαi1 and Gαi3 differentially interact with, and regulate, the G protein-activated K+ channel. J. Biol. Chem.279, 17260–17268 (2004). CASPubMed Google Scholar
Geng, X. et al. Specificity of Gβγ signaling depends on Gα subunit coupling with G-protein-sensitive K channels. Pharmacology84, 82–90 (2009). This study and references 84 and 85 show that PTX-sensitive Gα subunits alter GIRK function by interacting directly with the channel. CASPubMed Google Scholar
Gales, C. et al. Real-time monitoring of receptor and G-protein interactions in living cells. Nature Methods2, 177–184 (2005). CASPubMed Google Scholar
Fowler, C. E., Aryal, P., Suen, K. F. & Slesinger, P. A. Evidence for association of GABAB receptors with Kir3 channels and RGS4 proteins. J. Physiol.580, 51–65 (2007). CASPubMed Google Scholar
Bünemann, M., Frank, M. & Lohse, M. J. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl Acad. Sci. USA100, 16077–16082 (2003). PubMedPubMed Central Google Scholar
Frank, M., Thumer, L., Lohse, M. J. & Bunemann, M. G protein activation without subunit dissociation depends on a Gαi-specific region. J. Biol. Chem.280, 24584–24590 (2005). CASPubMed Google Scholar
Digby, G. J., Sethi, P. R. & Lambert, N. A. Differential dissociation of G protein heterotrimers. J. Physiol.586, 3325–3335 (2008). CASPubMedPubMed Central Google Scholar
Digby, G. J., Lober, R. M., Sethi, P. R. & Lambert, N. A. Some G protein heterotrimers physically dissociate in living cells. Proc. Natl Acad. Sci. USA103, 17789–17794 (2006). CASPubMedPubMed Central Google Scholar
Gibson, S. K. & Gilman, A. G. Giα and Gβ subunits both define selectivity of G protein activation by α2-adrenergic receptors. Proc. Natl Acad. Sci. USA103, 212–217 (2006). CASPubMed Google Scholar
Clancy, S. M., Boyer, S. B. & Slesinger, P. A. Coregulation of natively expressed pertussis toxin-sensitive muscarinic receptors with G-protein-activated potassium channels. J. Neurosci.27, 6388–6399 (2007). CASPubMedPubMed Central Google Scholar
Boyer, S. et al. Direct interaction of GABAB receptors with M2 muscarinic receptors enhances muscarinic signaling. J. Neurosci.29, 15796–15809 (2009). CASPubMedPubMed Central Google Scholar
Kulik, A. et al. Compartment-dependent colocalization of Kir3.2-containing K+ channels and GABAB receptors in hippocampal pyramidal cells. J. Neurosci.26, 4289–4297 (2006). CASPubMedPubMed Central Google Scholar
Chen, X. & Johnston, D. Constitutively active G-protein-gated inwardly rectifying K+ channels in dendrites of hippocampal CA1 pyramidal neurons. J. Neurosci.25, 3787–3792 (2005). CASPubMedPubMed Central Google Scholar
Fernandez-Alacid, L. et al. Subcellular compartment-specific molecular diversity of pre- and post-synaptic GABA-activated GIRK channels in Purkinje cells. J. Neurochem.110, 1363–1376 (2009). CASPubMedPubMed Central Google Scholar
Bacci, A., Huguenard, J. R. & Prince, D. A. Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature431, 312–316 (2004). This paper shows that low-threshold spiking interneurons undergo a hyperpolarization mediated by GIRK channels that surprisingly occurs cell-autonomously through endocannabinoids, providing an example of autaptic transmission involving GIRKs. CASPubMed Google Scholar
Lacey, M. G., Mercuri, N. B. & North, R. A. Dopamine acts on D2 receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta. J. Physiol.392, 397–416 (1987). CASPubMedPubMed Central Google Scholar
Newberry, N. R. & Nicoll, R. A. Comparison of the action of baclofen with gamma-aminobutyric acid on rat hippocampal pyramidal cells in vitro. J. Physiol.360, 161–185 (1985). CASPubMedPubMed Central Google Scholar
Beckstead, M. J. & Williams, J. T. Long-term depression of a dopamine IPSC. J. Neurosci.27, 2074–2080 (2007). This study reports that the dopamine-dependent slow IPSC is persistently reduced after strong dendrodendritic release of dopamine. CASPubMedPubMed Central Google Scholar
Dutar, P., Vu, H. M. & Perkel, D. J. Pharmacological characterization of an unusual mGluR-evoked neuronal hyperpolarization mediated by activation of GIRK channels. Neuropharmacology38, 467–475 (1999). CASPubMed Google Scholar
Nicoll, R. A. My close encounter with GABAB receptors. Biochem. Pharmacol.68, 1667–1674 (2004). CASPubMed Google Scholar
Scanziani, M. GABA spillover activates postsynaptic GABAB receptors to control rhythmic hippocampal activity. Neuron25, 673–681 (2000). CASPubMed Google Scholar
Isaacson, J. S., Solis, J. M. & Nicoll, R. A. Local and diffuse synaptic actions of GABA in the hippocampus. Neuron10, 165–175 (1993). CASPubMed Google Scholar
Luscher, B. & Keller, C. A. Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. Pharmacol. Ther.102, 195–221 (2004). CASPubMed Google Scholar
Beckstead, M. J., Grandy, D. K., Wickman, K. & Williams, J. T. Vesicular dopamine release elicits an inhibitory postsynaptic current in midbrain dopamine neurons. Neuron42, 939–946 (2004). CASPubMed Google Scholar
Jin, W. & Lu, Z. A novel high-affinity inhibitor for inward-rectifyier K+ channels. Biochemistry37, 13291–13299 (1998). CASPubMed Google Scholar
Michaeli, A. & Yaka, R. Dopamine inhibits GABAA currents in ventral tegmental area dopamine neurons via activation of presynaptic G-protein coupled inwardly-rectifying potassium channels. Neuroscience165, 1159–1169 (2010). This paper provides evidence that GIRK channels contribute to a G protein-coupled, agonist-mediated presynaptic inhibition of transmitter release in the VTA. CASPubMed Google Scholar
Ladera, C. et al. Pre-synaptic GABAB receptors inhibit glutamate release through GIRK channels in rat cerebral cortex. J. Neurochem.107, 1506–1517 (2008). CASPubMed Google Scholar
Sun, Q. Q., Huguenard, J. R. & Prince, D. A. Somatostatin inhibits thalamic network oscillations in vitro: actions on the GABAergic neurons of the reticular nucleus. J. Neurosci.22, 5374–5386 (2002). CASPubMedPubMed Central Google Scholar
Pietersen, A. N., Lancaster, D. M., Patel, N., Hamilton, J. B. & Vreugdenhil, M. Modulation of gamma oscillations by endogenous adenosine through A1 and A2A receptors in the mouse hippocampus. Neuropharmacology56, 481–492 (2009). CASPubMed Google Scholar
Rice, M. E. & Cragg, S. J. Dopamine spillover after quantal release: rethinking dopamine transmission in the nigrostriatal pathway. Brain Res. Rev.58, 303–313 (2008). CASPubMedPubMed Central Google Scholar
Huang, C. S. et al. Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition. Cell123, 105–118 (2005). This paper shows that LTP of glutamatergic transmission leads to a concomitant potentiation of the GABAB–GIRK slow IPSC, thereby strengthening GABA-mediated inhibition. CASPubMed Google Scholar
Chung, H. J., Qian, X., Ehlers, M., Jan, Y. N. & Jan, L. Y. Neuronal activity regulates phosphorylation-dependent surface delivery of G protein-activated inwardly rectifying potassium channels. Proc. Natl Acad. Sci. USA106, 629–634 (2009). CASPubMed Google Scholar
Chung, H. J. et al. G protein-activated inwardly rectifying potassium channels mediate depotentiation of long-term potentiation. Proc. Natl Acad. Sci. USA106, 635–640 (2009). This paper provides evidence that adenosine-dependent reversal of glutamatergic LTP (depotentiation) involves activation of GIRK channels. CASPubMed Google Scholar
Patil, N. et al. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nature Genet.11, 126–129 (1995). CASPubMed Google Scholar
Kofuji, P. et al. Functional analysis of the weaver mutant GIRK2 K+ channel and rescue of weaver granule cells. Neuron16, 941–952 (1996). CASPubMed Google Scholar
Navarro, B. et al. Nonselective and Gβγ-insensitive weaver K+ channels. Science272, 1950–1953 (1996). CASPubMed Google Scholar
Ikeda, K., Kobayashi, T., Kumanishi, T., Niki, H. & Yano, R. Involvement of G-protein-activated inwardly rectifying K (GIRK) channels in opioid-induced analgesia. Neurosci. Res.38, 113–116 (2000). CASPubMed Google Scholar
Roffler-Tarlov, S., Martin, B., Graybiel, A. M. & Kauer, J. S. Cell death in the midbrain of the murine mutation weaver. J. Neurosci.16, 1819–1826 (1996). CASPubMedPubMed Central Google Scholar
Mitrovic, I. et al. Contribution of GIRK2-mediated postsynaptic signaling to opiate and α2-adrenergic analgesia and analgesic sex differences. Proc. Natl Acad. Sci. USA100, 271–276 (2003). CASPubMed Google Scholar
Blednov, Y. A., Stoffel, M., Alva, H. & Harris, R. A. A pervasive mechanism for analgesia: activation of GIRK2 channels. Proc. Natl Acad. Sci. USA100, 277–282 (2003). CASPubMed Google Scholar
Marker, C. L., Lujan, R., Loh, H. H. & Wickman, K. Spinal G-protein-gated potassium channels contribute in a dose-dependent manner to the analgesic effect of μ- and δ- but not κ-opioids. J. Neurosci.25, 3551–3559 (2005). This study and references 135, 137 and 138 implicate GIRK channels in the analgesic effects of opioids. CASPubMedPubMed Central Google Scholar
Ingram, S. L., Macey, T. A., Fossum, E. N. & Morgan, M. M. Tolerance to repeated morphine administration is associated with increased potency of opioid agonists. Neuropsychopharmacology33, 2494–2450 (2008). CASPubMed Google Scholar
Bradaïa, A., Berton, F., Ferrari, S. & Lüscher, C. β-Arrestin2, interacting with phosphodiesterase 4, regulates synaptic release probability and presynaptic inhibition by opioids. Proc. Natl Acad. Sci. USA102, 3034–3039 (2005). PubMedPubMed Central Google Scholar
Dang, V. C., Napier, I. A. & Christie, M. J. Two distinct mechanisms mediate acute μ-opioid receptor desensitization in native neurons. J. Neurosci.29, 3322–3327 (2009). CASPubMedPubMed Central Google Scholar
Whistler, J. L., Chuang, H.-H., Chu, P., Jan, L. Y. & von Zastrow, M. Functional dissociation of μ opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron23, 737–746 (1999). CASPubMed Google Scholar
Ingram, S. L., Macey, T. A., Fossum, E. N. & Morgan, M. M. Tolerance to repeated morphine administration is associated with increased potency of opioid agonists. Neuropsychopharmacology33, 2494–2504 (2007). PubMed Google Scholar
Signorini, S., Liao, Y. J., Duncan, S. A., Jan, L. Y. & Stoffel, M. Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled, inwardly rectifying K+ channel GIRK2. Proc. Natl Acad. Sci. USA94, 923–927 (1997). This study is the first to use the GIRK-knockout mouse and shows that the loss of GIRK channels leads to spontaneous convulsions and a propensity for generalized seizures. CASPubMedPubMed Central Google Scholar
Kobayashi, T., Washiyama, K. & Ikeda, K. Modulators of G protein-activated inwardly rectifying K+ channels: potentially therapeutic agents for addictive drug users. Ann. NY Acad. Sci.1025, 590–594 (2004). CASPubMed Google Scholar
Pei, Q., Lewis, L., Grahame-Smith, D. G. & Zetterstrom, T. S. C. Alteration in expression of G-protein-activated inward rectifier K+-channel subunits GIRK 1 and GIRK 2 in the rat brain following electroconvulsive shock. Neuroscience90, 621–627 (1999). CASPubMed Google Scholar
Mazarati, A. et al. Regulation of kindling epileptogenesis by hippocampal galanin type 1 and type 2 receptors: the effects of subtype-selective agonists and the role of G-protein-mediated signaling. J. Pharmacol. Exp. Ther.318, 700–708 (2006). CASPubMed Google Scholar
Reeves, R. H. et al. A mouse model for Down syndrome exhibits learning and behaviour deficits. Nature Genet.11, 177–184 (1995). CASPubMed Google Scholar
Sago, H. et al. Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proc. Natl Acad. Sci. USA95, 6256–6261 (1998). CASPubMedPubMed Central Google Scholar
Siarey, R. J. et al. Increased synaptic depression in the Ts65Dn mouse, a model for mental retardation in Down syndrome. Neuropharmacology38, 1917–1920 (1999). CASPubMed Google Scholar
Luscher, C. & Ungless, M. A. The mechanistic classification of addictive drugs. PLoS Med.3, e437 (2006). PubMedPubMed Central Google Scholar
Johnson, S. W. & North, R. A. Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J. Physiol.450, 455–468 (1992). CASPubMedPubMed Central Google Scholar
Szabo, B., Siemes, S. & Wallmichrath, I. Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoids. Eur. J. Neurosci.15, 2057–2061 (2002). PubMed Google Scholar
Kajii, Y. et al. A developmentally regulated and psychostimulant-inducible novel rat gene mrt1 encoding PDZ-PX proteins isolated in the neocortex. Mol. Psychiatry8, 434–444 (2003). CASPubMed Google Scholar
Federici, M., Nistico, R., Giustizieri, M., Bernardi, G. & Mercuri, N. B. Ethanol enhances GABAB-mediated inhibitory postsynaptic transmission on rat midbrain dopaminergic neurons by facilitating GIRK currents. Eur. J. Neurosci.29, 1369–1377 (2009). PubMed Google Scholar
Ikeda, K. et al. Molecular mechanisms of analgesia induced by opioids and ethanol: is the GIRK channel one of the keys? Neurosci. Res.44, 121–131 (2002). CASPubMed Google Scholar
Hill, K. G., Alva, H., Blednov, Y. A. & Cunningham, C. L. Reduced ethanol-induced conditioned taste aversion and conditioned place preference in GIRK2 null mutant mice. Psychopharmacology (Berl.)169, 108–114 (2003). CAS Google Scholar
Bartoletti, M., Ricci, F. & Gaiardi, M. A GABAB agonist reverses the behavioral sensitization to morphine in rats. Psychoparmacology192, 79–85 (2007). CAS Google Scholar
Schein, J. C., Wang, J. K. & Roffler-Tarlov, S. K. The effect of GIRK2wv on neurite growth, protein expression, and viability in the CNS-derived neuronal cell line, CATH.A-differentiated. Neuroscience134, 21–32 (2005). CASPubMed Google Scholar
Harkins, A. B. & Fox, A. P. Cell death in weaver mouse cerebellum. Cerebellum1, 201–206 (2002). PubMed Google Scholar
Liss, B. et al. K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nature Neurosci.8, 1742–1751 (2005). CASPubMed Google Scholar
Patsoukis, N. et al. Thiol redox state and oxidative stress in midbrain and striatum of weaver mutant mice, a genetic model of nigrostriatal dopamine deficiency. Neurosci. Lett.376, 24–28 (2005). CASPubMed Google Scholar
Coulson, E. J. et al. p75 neurotrophin receptor mediates neuronal cell death by activating GIRK channels through phosphatidylinositol 4,5-bisphosphate. J. Neurosci.28, 315–324 (2008). This paper reports that activation of the nerve growth factor receptor leads to enhanced GIRK channel activity and generates a sustained K+ efflux that triggers apoptosis in dorsal root ganglion neurons. CASPubMedPubMed Central Google Scholar
Airan, R. D., Thompson, K. R., Fenno, L. E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signalling. Nature458, 1025–1029 (2009). CASPubMed Google Scholar
Soejima, M. & Noma, A. Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflügers Arch.400, 424–431 (1984). CASPubMed Google Scholar
Yatani, A. et al. The G protein-gated atrial K+ channel is stimulated by three distinct Giα-subunits. Nature336, 680–682 (1988). CASPubMed Google Scholar
Codina, J., Yatani, A., Grenet, D., Brown, A. M. & Birnbaumer, L. The α subunit of the GTP binding protein Gk opens atrial potassium channels. Science236, 442–445 (1987). CASPubMed Google Scholar
Leaney, J. L. & Tinker, A. The role of members of the pertussis toxin-sensitive family of G proteins in coupling receptors to the activation of the G protein-gated inwardly rectifying potassium channel. Proc. Natl Acad. Sci. USA97, 5651–5656 (2000). CASPubMedPubMed Central Google Scholar
Hein, P., Frank, M., Hoffmann, C., Lohse, M. J. & Bunemann, M. Dynamics of receptor/G protein coupling in living cells. EMBO J.24, 4106–4114 (2005). CASPubMedPubMed Central Google Scholar
Ippolito, D. L., Xu, M., Bruchas, M. R., Wickman, K. & Chavkin, C. Tyrosine phosphorylation of Kir3.1 in spinal cord is induced by acute inflammation, chronic neuropathic pain, and behavioral stress. J. Biol. Chem.280, 41683–41693 (2005). CASPubMed Google Scholar
Bettahi, I., Marker, C. L., Roman, M. I. & Wickman, K. Contribution of the Kir3.1 subunit to the muscarinic-gated atrial potassium channel IKACh. J. Biol. Chem.277, 48282–48288 (2002). CASPubMed Google Scholar
Blednov, Y. A., Stoffel, M., Chang, S. R. & Harris, R. A. GIRK2 deficient mice. Evidence for hyperactivity and reduced anxiety. Physiol. Behav.74, 109–117 (2001). CASPubMed Google Scholar
Blednov, Y. A., Stoffel, M., Chang, S. R. & Harris, R. A. Potassium channels as targets for ethanol: studies of G-protein-coupled inwardly rectifying potassium channel 2 (GIRK2) null mutant mice. J. Pharmacol. Exp. Ther.298, 521–530 (2001). CASPubMed Google Scholar
Wickman, K., Nemec, J., Gendler, S. J. & Clapham, D. E. Abnormal heart rate regulation in GIRK4 knockout mice. Neuron20, 103–114 (1998). CASPubMed Google Scholar
VanDongen, A. M. et al. Newly identified brain potassium channels gated by the guanine nucleotide binding protein Go . Science242, 1433–1437 (1988). CASPubMed Google Scholar
Leaney, J. L. Contribution of Kir3.1, Kir3.2A and Kir3.2C subunits to native G protein-gated inwardly rectifying potassium currents in cultured hippocampal neurons. Eur. J. Neurosci.18, 2110–2118 (2003). PubMed Google Scholar
Uchida, S., Akaike, N. & Nabekura, J. Dopamine activates inward rectifier K+ channel in acutely dissociated rat substantia nigra neurones. Neuropharmacology39, 191–201 (2000). CASPubMed Google Scholar
Grigg, J. J., Kozasa, T., Nakajima, Y. & Nakajima, S. Single-channel properties of a G-protein-coupled inward rectifier potassium channel in brain neurones. J. Neurophysiol.75, 318–328 (1996). CASPubMed Google Scholar
Miyake, M., Christie, M. J. & North, R. A. Single potassium channels opened by opioids in rat locus coeruleus neurons. Proc. Natl Acad. Sci. USA86, 3419–3422 (1989). CASPubMedPubMed Central Google Scholar
Kawano, T., Zhao, P., Nakajima, S. & Nakajima, Y. Single-cell RT-PCR analysis of GIRK channels expressed in rat locus coeruleus and nucleus basalis neurons. Neurosci. Lett.358, 63–67 (2004). CASPubMed Google Scholar
Bajic, D., Koike, M., Albsoul-Younes, A. M., Nakajima, S. & Nakajima, Y. Two different inward rectifier K+ channels are effectors for transmitter-induced slow excitation in brain neurons. Proc. Natl Acad. Sci. USA99, 14494–14499 (2002). CASPubMedPubMed Central Google Scholar