Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease (original) (raw)
Ferrier, D. The Functions of the Brain (Putnam's Sons, New York, 1876). Book Google Scholar
Penney, J. B. Jr & Young, A. B. Striatal inhomogeneities and basal ganglia function. Mov. Disord.1, 3–15 (1986). ArticlePubMed Google Scholar
Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci.12, 366–375 (1989). ArticleCASPubMed Google Scholar
Chevalier, G. & Deniau, J. M. Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci.13, 277–281 (1990). This review introduced a conceptual development in suggesting that a pause in neuronal firing in basal ganglia output nuclei disinhibits efferent targets and is the major physiological mechanism by which the basal ganglia exert their effects on behaviour. ArticleCASPubMed Google Scholar
Gerfen, C. R. & Wilson, C. J. in Handbook of Chemical Neuroanatomy Vol 12 (eds Swanson, L. W., Bjorklund, A. & Hokfelt, T.) 371–468 (Elsevier, Amsterdam, 1996). Google Scholar
DeLong, M. R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci.13, 281–285 (1990). A classic review of the basal ganglia pathophyisiological model and the concepts on which it is based. ArticleCASPubMed Google Scholar
Gerfen, C. R. et al. D1 and D2 dopamine receptor regulated gene expression of striatonigral and striatopallidal neurons. Science250, 1429–1431 (1990). ArticleCASPubMed Google Scholar
Crossman, A. R. Primate models of dyskinesia: the experimental approach to the study of basal ganglia-related involuntary movement disorders. Neuroscience21, 1–40 (1987). ArticleCASPubMed Google Scholar
Bevan, M. D., Bolam, J. P. & Crossman, A. R. Convergent synaptic input from the neostriatum and the subthalamus onto identified nigrothalamic neurons in the rat. Eur. J. Neurosci.6, 320–334 (1994). ArticleCASPubMed Google Scholar
Wu, Y., Richard, S. & Parent, A. The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat. Neurosci. Res.38, 49–62 (2000). ArticleCASPubMed Google Scholar
Matamales, M. et al. Striatal medium-sized spiny neurons: identification by nuclear staining and study of neuronal subpopulations in BAC transgenic mice. PLoS ONE4, e4770 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Hartmann-von Monakow, K. H., Akert, K. & Kunzle, H. Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp. Brain Res.33, 395–403 (1978). Google Scholar
Nambu, A., Tokuno, H. & Takada, M. Functional significance of the cortico–subthalamo–pallidal 'hyperdirect' pathway. Neurosci. Res.43, 111–117 (2002). ArticlePubMed Google Scholar
Lanciego, J. L. et al. Thalamic innervation of striatal and subthalamic neurons projecting to the rat entopeduncular nucleus. Eur. J. Neurosci.19, 1267–1277 (2004). ArticlePubMed Google Scholar
Feger, J., Bevan, M. & Crossman, A. R. The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separate neuronal populations — a comparison with the corticostriatal and corticosubthalamic efferents in a retrograde fluorescent double-labelling study. Neuroscience60, 125–132 (1994). ArticleCASPubMed Google Scholar
Coizet, V. et al. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J. Neurosci.29, 5701–5709 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mena-Segovia, J., Bolam, J. P. & Magill, P. J. Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci.27, 585–588 (2004). ArticleCASPubMed Google Scholar
Smith, Y., Bevan, M. D., Shink, E. & Bolam, J. P. Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience86, 353–387 (1998). ArticleCASPubMed Google Scholar
Miwa, H., Fuwa, T., Nishi, K. & Kondo, T. Subthalamo-pallido-striatal axis: a feedback system in the basal ganglia. Neuroreport12, 3795–3798 (2001). ArticleCASPubMed Google Scholar
Shink, E., Bevan, M. D., Bolam, J. P. & Smith, Y. The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience73, 335–357 (1996). ArticleCASPubMed Google Scholar
Kita, H. in Gaba And The Basal Ganglia: From Molecules To Systems (eds Tepper, J., Absercrombie, E. & Bolam, J. P.) 111–133 (Elsevier, Amsterdam, 2007). Book Google Scholar
Bevan, M. D., Booth, P. A. C., Eaton, S. A. & Bolam, J. P. Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. J. Neurosci.18, 9438–9452 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kita, H., Tokuno, H. & Nambu, A. Monkey globus pallidus external segment neurons projecting to the neostriatum. Neuroreport10, 1467–1472 (1999). ArticleCASPubMed Google Scholar
McGeorge, A. J. & Faull, R. L. M. The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience29, 503–537 (1989). ArticleCASPubMed Google Scholar
Romanelli, P., Esposito, V., Schaal, D. W. & Heit, G. Somatotopy in the basal ganglia: experimental and clinical evidence for segregated sensorimotor channels. Brain Res. Rev.48, 112–128 (2005). ArticlePubMed Google Scholar
Wiesendanger, E., Clarke, S., Kraftsik, R. & Tardif, E. Topography of cortico-striatal connections in man: anatomical evidence for parallel organization. Eur. J. Neurosci.20, 1915–1922 (2004). ArticleCASPubMed Google Scholar
Nakano, K., Kayahara, T., Tsutsumi, T. & Ushiro, H. Neural circuits and functional organization of the striatum. J. Neurol.247, V1–V15 (2000). ArticlePubMed Google Scholar
Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann. Rev. Neurosci.9, 357–381 (1986). The classic and first description of the re-entrant looped architecture by which the basal ganglia interact with external structures. ArticleCASPubMed Google Scholar
McHaffie, J. G., Stanford, T. R., Stein, B. E., Coizet, V. & Redgrave, P. Subcortical loops through the basal ganglia. Trends Neurosci.28, 401–407 (2005). ArticleCASPubMed Google Scholar
Bolam, J. P. & Bennett, B. D. in Molecular and Cellular Mechanims of Neostriatal Function (eds Ariano, M. A. & Surmeier, D. J.) 1–19 (R. G. Landes Co., Texas, 1995). Google Scholar
Gillies, A. & Willshaw, D. Models of the subthalamic nucleus: the importance of intranuclear connectivity. Med. Eng. Phys.26, 723–732 (2004). ArticleCASPubMed Google Scholar
Benarroch, E. E. Subthalamic nucleus and its connections: anatomic substrate for the network effects of deep brain stimulation. Neurology70, 1991–1995 (2008). ArticlePubMed Google Scholar
Parent, M. & Parent, A. The microcircuitry of primate subthalamic nucleus. Parkinsonism Relat. Disord.13, S292–S295 (2007). ArticlePubMed Google Scholar
Nakano, K. Neural circuits and topographic organization of the basal ganglia and related regions. Brain Dev.22, S5–S16 (2000). ArticlePubMed Google Scholar
Voorn, P., Vanderschuren, L. J., Groenewegen, H. J., Robbins, T. W. & Pennartz, C. M. Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci.27, 468–474 (2004). ArticleCASPubMed Google Scholar
Draganski, B. et al. Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J. Neurosci.28, 7143–7152 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lehericy, S. et al. 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. Cereb. Cortex14, 1302–1309 (2004). ArticlePubMed Google Scholar
Doron, O. & Goelman, G. Evidence for asymmetric intra substantia nigra functional connectivity-application to basal ganglia processing. Neuroimage49, 2940–2946 (2010). ArticlePubMed Google Scholar
Krout, K. E., Belzer, R. E. & Loewy, A. D. Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol.448, 53–101 (2002). ArticlePubMed Google Scholar
Krout, K. E., Loewy, A. D., Westby, G. W. M. & Redgrave, P. Superior colliculus projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol.431, 198–216 (2001). ArticleCASPubMed Google Scholar
Krout, K. E. & Loewy, A. D. Periaqueductal gray matter projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol.424, 111–141 (2000). ArticleCASPubMed Google Scholar
Erro, E., Lanciego, J. L. & Gimenez-Amaya, J. M. Relationships between thalamostriatal neurons and pedunculopontine projections to the thalamus: a neuroanatomical tract-tracing study in the rat. Exp. Brain Res.127, 162–170 (1999). ArticleCASPubMed Google Scholar
Bjorklund, A. & Dunnett, S. B. Dopamine neuron systems in the brain: an update. Trends Neurosci.30, 194–202 (2007). ArticlePubMedCAS Google Scholar
Matsuda, W. et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci.29, 444–453 (2009). ArticleCASPubMedPubMed Central Google Scholar
Smith, Y., Lavoie, B., Dumas, J. & Parent, A. Evidence for a distinct nigropallidal dopaminergic projection in the squirrel monkey. Brain Res.482, 381–386 (1989). ArticleCASPubMed Google Scholar
Cragg, S. J., Baufreton, J., Xue, Y., Bolam, J. P. & Bevan, M. D. Synaptic release of dopamine in the subthalamic nucleus. Eur. J. Neurosci.20, 1788–1802 (2004). ArticlePubMed Google Scholar
Grace, A. A. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience41, 1–24 (1991). ArticleCASPubMed Google Scholar
Redgrave, P., Prescott, T. & Gurney, K. N. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience89, 1009–1023 (1999). A general description of the mechanisms and computational requirements of selection performed by the basal ganglia. ArticleCASPubMed Google Scholar
Mink, J. W. The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol.50, 381–425 (1996). ArticleCASPubMed Google Scholar
Hikosaka, O., Takikawa, Y. & Kawagoe, R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev.80, 953–978 (2000). ArticleCASPubMed Google Scholar
Redgrave, P. & Gurney, K. The short-latency dopamine signal: a role in discovering novel actions? Nature Rev. Neurosci.7, 967–975 (2006). ArticleCAS Google Scholar
Redgrave, P., Gurney, K. & Reynolds, J. What is reinforced by phasic dopamine signals? Brain Res. Rev.58, 322–339 (2008). ArticleCASPubMed Google Scholar
Schultz, W. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol.57, 87–115 (2006). ArticlePubMed Google Scholar
Alexander, G. E. & DeLong, M. R. Microstimulation of the primate neurostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. J. Neurophysiol.53, 1417–1430 (1985). ArticleCASPubMed Google Scholar
Kimura, M. Behaviorally contingent property of movement-related activity of the primate putamen. J. Neurophysiol.63, 1277–1296 (1990). ArticleCASPubMed Google Scholar
Flaherty, A. W. & Graybiel, A. M. Two input systems for body representation in the primate striatal matrix: experimental evidence in the squirrel monkey. J. Neurosci.13, 1120–1137 (1993). ArticleCASPubMedPubMed Central Google Scholar
Hikosaka, O., Sakamoto, M. & Usui, S. Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. J. Neurophysiol.61, 780–798 (1989). ArticleCASPubMed Google Scholar
Hikosaka, O., Sakamoto, M. & Usui, S. Functional properties of monkey caudate neurons II. Visual and auditory responses. J. Neurophysiol.61, 799–813 (1989). ArticleCASPubMed Google Scholar
Tremblay, L., Hollerman, J. R. & Schultz, W. Modifications of reward expectation-related neuronal activity during learning in primate striatum. J. Neurophysiol.80, 964–977 (1998). ArticleCASPubMed Google Scholar
Scholz, V. H. et al. Laterality, somatotopy and reproducibility of the basal ganglia and motor cortex during motor tasks. Brain Res.879, 204–215 (2000). ArticleCASPubMed Google Scholar
Gerardin, E. et al. Foot, hand, face and eye representation in the human striatum. Cereb. Cortex13, 162–169 (2003). ArticlePubMed Google Scholar
Dickinson, A. The 28th Bartlett Memorial Lecture Causal learning: an associative analysis. Q. J. Exp. Psychol. B.54, 3–25 (2001). ArticleCASPubMed Google Scholar
Balleine, B. W., Lijeholm, M. & Ostlund, S. B. The integrative function of the basal ganglia in instrumental conditioning. Behav. Brain Res.199, 43–52 (2009). ArticlePubMed Google Scholar
Balleine, B. W. & O'Doherty, J. P. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology35, 48–69 (2009). This paper provides well-written and clearly explained views about the role of the basal ganglia in the control of human and rodent behaviour. ArticlePubMed Central Google Scholar
Yin, H. H. & Knowlton, B. J. The role of the basal ganglia in habit formation. Nature Rev. Neurosci.7, 464–476 (2006). An excellent review of the role of the basal ganglia in habitual and goal-directed control. ArticleCAS Google Scholar
Thorndike, E. L. Animal Intelligence. (Macmillan, New York, 1911). Google Scholar
Spence, K. W. Behavior Theory and Conditioning (Yale Univ. Press, New Haven, 1956). Book Google Scholar
Dickinson, A. & Balleine, B. Motivational control of goal-directed action. Anim. Learn. Behav.22, 1–18 (1994). Article Google Scholar
Adams, C. D. & Dickinson, A. Instrumental responding following reinforcer devaluation. Q. J. Exp. Psychol.33, 109–121 (1981). Article Google Scholar
Hammond, L. J. The effect of contingency upon the appetitive conditioning of free-operant behavior. J. Exp. Anal. Behav.34, 297–304 (1980). ArticleCASPubMedPubMed Central Google Scholar
Balleine, B. W. & Dickinson, A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology37, 407–419 (1998). ArticleCASPubMed Google Scholar
Horvitz, J. C. Stimulus-response and response-outcome learning mechanisms in the striatum. Behav. Brain Res.199, 129–140 (2009). ArticlePubMed Google Scholar
Schwabe, L., Wolf, O. T. & Oitzl, M. S. Memory formation under stress: quantity and quality. Neurosci. Biobehav. Rev.34, 584–591 (2010). ArticlePubMed Google Scholar
Hikosaka, O. & Isoda, M. Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends Cogn. Sci.14, 154–161 (2010). An important recent analysis of the neural mechanisms responsible for switching between automatic and controlled behaviour. ArticlePubMedPubMed Central Google Scholar
Dickinson, A., Nicholas, D. J. & Adams, C. D. The effect of the instrumental training contingency on susceptibility to reinforcer devaluation. Q. J. Exp. Psychol.35, 35–51 (1983). Article Google Scholar
Heuer, H., Spijkers, W., Kiesswetter, E. & Schmidtke, V. Effects of sleep loss, time of day, and extended mental work on implicit and explicit learning of sequences. J. Exp. Psychol. Appl.4, 139–162 (1998). ArticleCASPubMed Google Scholar
Dias-Ferreira, E. et al. Chronic stress causes frontostriatal reorganization and affects decision-making. Science325, 621–625 (2009). ArticleCASPubMed Google Scholar
Balleine, B. W. & Ostlund, S. B. Still at the choice-point: action selection and initiation in istrumental conditioning. encoding. Ann. NY Acad. Sci.1104, 147–171 (2007). ArticlePubMed Google Scholar
Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neurosci.8, 1704–1711 (2005). ArticleCASPubMed Google Scholar
Schneider, W. & Chein, J. M. Controlled & automatic processing: behavior, theory, and biological mechanisms. Cogn. Sci.27, 525–559 (2003). An excellent review of the differences between controlled and automatic processing in humans. Article Google Scholar
Yin, H. H., Knowlton, B. J. & Balleine, B. W. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur. J. Neurosci.19, 181–189 (2004). ArticlePubMed Google Scholar
Yin, H. H., Knowlton, B. J. & Balleine, B. W. Blockade of NMDA receptors in the dorsomedial striatum prevents action–outcome learning in instrumental conditioning. Eur. J. Neurosci.22, 505–512 (2005). ArticlePubMed Google Scholar
Yin, H. H., Ostlund, S. B., Knowlton, B. J. & Balleine, B. W. The role of the dorsomedial striatum in instrumental conditioning. Eur. J. Neurosci.22, 513–523 (2005). ArticlePubMed Google Scholar
Yin, H. H., Knowlton, B. J. & Balleine, B. W. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action–outcome contingency in instrumental conditioning. Behav. Brain Res.166, 189–196 (2006). ArticlePubMed Google Scholar
Miyachi, S., Hikosaka, O., Miyashita, K., Karadi, Z. & Rand, M. K. Differential roles of monkey striatum in learning of sequential hand movement. Exp. Brain Res.115, 1–5 (1997). ArticleCASPubMed Google Scholar
Miyachi, S., Hikosaka, O. & Lu, X. F. Differential activation of monkey striatal neurons in the early and late stages of procedural learning. Exp. Brain Res.146, 122–126 (2002). ArticlePubMed Google Scholar
Monchi, O., Petrides, M., Petre, V., Worsley, K. & Dagher, A. Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J. Neurosci.21, 7733–7741 (2001). ArticleCASPubMedPubMed Central Google Scholar
Monchi, O., Petrides, M., Strafella, A. P., Worsley, K. J. & Doyon, J. Functional role of the basal ganglia in the planning and execution of actions. Ann. Neurol.59, 257–264 (2006). ArticlePubMed Google Scholar
Lewis, S. J. G., Dove, A., Robbins, T. W., Barker, R. A. & Owen, A. M. Striatal contributions to working memory: a functional magnetic resonance imaging study in humans. Eur. J. Neurosci.19, 755–760 (2004). ArticlePubMed Google Scholar
Jueptner, M., Frith, C. D., Brooks, D. J., Frackowiak, R. S. & Passingham, R. E. Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J. Neurophysiol.77, 1325–1337 (1997). ArticleCASPubMed Google Scholar
Lehericy, S. et al. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc. Natl Acad. Sci.USA102, 12566–12571 (2005). An early study in humans indicating that different striatal regions become engaged during different phases of motor learning. ArticleCASPubMedPubMed Central Google Scholar
Tanaka, S. C., Balleine, B. W. & O'Doherty, J. P. Calculating consequences: brain systems that encode the causal effects of actions. J. Neurosci.28, 6750–6755 (2008). ArticleCASPubMedPubMed Central Google Scholar
Tricomi, E., Balleine, B. W. & O'Doherty, J. P. A specific role for posterior dorsolateral striatum in human habit learning. Eur. J. Neurosci.29, 2225–2232 (2009). ArticlePubMedPubMed Central Google Scholar
Gurney, K., Prescott, T. J. & Redgrave, P. A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol. Cybern.84, 401–410 (2001). ArticleCASPubMed Google Scholar
Gurney, K., Prescott, T. J. & Redgrave, P. A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biol. Cybern.84, 411–423 (2001). ArticleCASPubMed Google Scholar
Humphries, M. D., Stewart, R. D. & Gurney, K. N. A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J. Neurosci.26, 12921–12942 (2006). ArticleCASPubMedPubMed Central Google Scholar
Prescott, T. J., Gonzalez, F. M. M., Gurney, K., Humphries, M. D. & Redgrave, P. A robot model of the basal ganglia: behavior and intrinsic processing. Neural Netw.19, 31–61 (2006). ArticlePubMed Google Scholar
Singh, S. P., Barto, A. G. & Chentanez, N. in Advances in Neural Information Processing Systems (eds Saul, L. K., Weiss, H. & Bottou, L.) 1281–1288 (MIT Press, Cambridge, Massachusetts, 2005). Google Scholar
Doubell, T. P., Skaliora, I., Baron, J. & King, A. J. Functional connectivity between the superficial and deeper layers of the superior colliculus: an anatomical substrate for sensorimotor integration. J. Neurosci.23, 6596–6607 (2003). ArticlePubMedPubMed Central Google Scholar
Sommer, M. A. & Wurtz, R. H. Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. J. Neurophysiol.83, 1979–2001 (2000). ArticleCASPubMed Google Scholar
McHaffie, J. G., Thomson, C. M. & Stein, B. E. Corticotectal and corticostriatal projections from the frontal eye fields of the cat: an anatomical examination using WGA-HRP. Somatosens Mot. Res.18, 117–130 (2001). ArticleCASPubMed Google Scholar
Gitelman, D. R., Parrish, T. B., Friston, K. J. & Mesulam, M. M. Functional anatomy of visual search: regional segregations within the frontal eye fields and effective connectivity of the superior colliculus. Neuroimage15, 970–982 (2002). ArticlePubMed Google Scholar
Takakusaki, K. & Okumura, T. Neurobiological basis of controlling posture and locomotion. Adv. Robot.22, 1629–1663 (2008). Article Google Scholar
Pavese, N. & Brooks, D. J. Imaging neurodegeneration in Parkinson's disease. Biochim. Biophys. Acta1792, 722–729 (2009). ArticleCASPubMed Google Scholar
Morrish, P. K., Sawle, G. V. & Brooks, D. J. Clinical and [18F] dopa PET findings in early Parkinson's disease. J. Neurol. Neurosurg. Psychiatr.59, 597–600 (1995). ArticleCAS Google Scholar
Kish, S. J., Shannak, K. & Hornykiewicz, O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. N. Engl. J. Med.318, 876–880 (1988). A key paper indicating a differential loss of dopamine from the sensorimotor territories of the caudal putamen in patients with Parkinson's disease. ArticleCASPubMed Google Scholar
Fearnley, J. M. & Lees, A. J. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain114, 2283–2301 (1991). ArticlePubMed Google Scholar
Marsden, C. D. The mysterious motor function of the basal ganglia: the Robert Wartenberg Lecture. Neurology32, 514–539 (1982). Classic, fundamental appraisal of the origin of movement disorders in early Parkinson's disease. ArticleCASPubMed Google Scholar
Rodriguez-Oroz, M. C. et al. Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms. Lancet Neurol.8, 1128–1139 (2009). ArticleCASPubMed Google Scholar
Schwab, R. S., Chafetz, M. E. & Walker, S. Control of two simultaneous voluntary motor acts in normals and in parkinsonism. AMA Arch. Neurol. Psychiatry72, 591–598 (1954). ArticleCASPubMed Google Scholar
Hoshiyama, M., Kaneoke, Y., Koike, Y., Takahashi, A. & Watanabe, S. Hypokinesia of associated movement in Parkinson's disease: a symptom in early stages of the disease. J. Neurol.241, 517–521 (1994). ArticleCASPubMed Google Scholar
Knowlton, B. J., Mangels, J. A. & Squire, L. R. A neostriatal habit learning system in humans. Science273, 1399–1402 (1996). ArticleCASPubMed Google Scholar
Wu, T., Chan, P. & Hallett, M. Effective connectivity of neural networks in automatic movements in Parkinson's disease. Neuroimage49, 2581–2587 (2010). ArticleCASPubMed Google Scholar
Moody, T. D., Chang, G. Y., Vanek, Z. F. & Knowlton, B. J. Concurrent discrimination learning in Parkinson's disease. Behav. Neurosci.124, 1–8 (2010). ArticlePubMed Google Scholar
Faure, A., Haberland, U., Conde, F. & El Massioui, N. Lesion to the nigrostriatal dopamine system disrupts stimulus- response habit formation. J. Neurosci.25, 2771–2780 (2005). ArticleCASPubMedPubMed Central Google Scholar
Benecke, R., Rothwell, J. C., Dick, J. P., Day, B. L. & Marsden, C. D. Performance of simultaneous movements in patients with Parkinson's disease. Brain109, 739–757 (1986). ArticlePubMed Google Scholar
Nieuwboer, A., Rochester, L., Muncks, L. & Swinnen, S. P. Motor learning in Parkinson's disease: limitations and potential for rehabilitation. Parkinsonism Relat. Disord.15, S53–S58 (2009). ArticlePubMed Google Scholar
Okuma, Y. & Yanagisawa, N. The clinical spectrum of freezing of gait in Parkinson's disease. Mov. Disord.23, S426–S430 (2008). ArticlePubMed Google Scholar
Benecke, R., Rothwell, J. C., Dick, J. P., Day, B. L. & Marsden, C. D. Disturbance of sequential movements in patients with Parkinson's disease. Brain110, 361–379 (1987). ArticlePubMed Google Scholar
Stelmach, G. E., Worringham, C. J. & Strand, E. A. Movement preparation in Parkinson's disease. The use of advance information. Brain109, 1179–1194 (1986). ArticlePubMed Google Scholar
Doyon, J. Motor sequence learning and movement disorders. Curr. Opin. Neurol.21, 478–483 (2008). ArticlePubMed Google Scholar
Nandhagopal, R. et al. Longitudinal progression of sporadic Parkinson's disease: a multi-tracer positron emission tomography study. Brain132, 2970–2979 (2009). ArticleCASPubMed Google Scholar
Rogers, M. A., Phillips, J. G., Bradshaw, J. L., Iansek, R. & Jones, D. Provision of external cues and movement sequencing in Parkinson's disease. Motor Control2, 125–132 (1998). ArticleCASPubMed Google Scholar
Jahanshahi, M., Brown, R. G. & Marsden, C. D. Simple and choice reaction time and the use of advance information for motor preparation in Parkinson's disease. Brain115, 539–564 (1992). ArticlePubMed Google Scholar
Lozza, A., Pepin, J. L., Rapisarda, G., Moglia, A. & Delwaide, P. J. Functional changes of brainstem reflexes in Parkinson's disease. Conditioning of the blink reflex R2 component by paired and index finger stimulation. J. Neural Transm.104, 679–687 (1997). ArticleCASPubMed Google Scholar
Fanselow, M. S. & Poulos, A. M. The neuroscience of mammalian associative learning. Annu. Rev. Psychol.56, 207–234 (2005). ArticlePubMed Google Scholar
Cardinal, R. N., Parkinson, J. A., Hall, J. & Everitt, B. J. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev.26, 321–352 (2002). ArticlePubMed Google Scholar
DeLong, M. R. & Wichmann, T. Circuits and circuit disorders of the basal ganglia. Arch. Neurol.64, 20–24 (2007). ArticlePubMed Google Scholar
Obeso, J. A. et al. The basal ganglia in Parkinson's disease: current concepts and unexplained observations. Ann. Neurol.64, S30–S46 (2008). ArticlePubMed Google Scholar
Filion, M. & Tremblay, L. Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res.547, 142–151 (1991). CASPubMed Google Scholar
Rodriguez-Oroz, M. C. et al. The subthalamic nucleus in Parkinson's disease: somatotopic organization and physiological characteristics. Brain124, 1777–1790 (2001). ArticleCASPubMed Google Scholar
Levy, R., Hutchison, W. D., Lozano, A. M. & Dostrovsky, J. O. Synchronized neuronal discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity. J. Neurosci.22, 2855–2861 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wichmann, T. & Soares, J. Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. J. Neurophysiol.95, 2120–2133 (2006). ArticlePubMedCAS Google Scholar
Lopez-Azcarate, J. et al. Coupling between β and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson's disease. J. Neurosci.30, 6667–6677 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hallett, M. & Khoshbin, S. A physiological mechanism of bradykinesia. Brain103, 301–314 (1980). ArticleCASPubMed Google Scholar
Marsden, C. D. & Obeso, J. A. The function of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease. Brain117, 877–897 (1994). A classic approach to the enigma of how the basal ganglia output can be destroyed without deteriorating the movement further in patients with Parkinson's disease. ArticlePubMed Google Scholar
Rivlin-Etzion, M. et al. Low-pass filter properties of basal ganglia-cortical-muscle loops in the normal and MPTP primate model of parkinsonism. J. Neurosci.28, 633–649 (2008). ArticleCASPubMedPubMed Central Google Scholar
Brown, P. & Eusebio, A. Paradoxes of functional neurosurgery: clues from basal ganglia recordings. Mov. Disord.23, 12–20 (2008). ArticlePubMed Google Scholar
Vitek, J. L. et al. Microelectrode-guided pallidotomy: technical approach and its application in medically intractable Parkinson's disease. J. Neurosurg.88, 1027–1043 (1998). ArticleCASPubMed Google Scholar
Vijayaraghavan, L., Krishnamoorthy, E. S., Brown, R. G. & Trimble, M. R. Abulia: a delphi survey of British neurologists and psychiatrists. Mov. Disord.17, 1052–1057 (2002). ArticlePubMed Google Scholar
Habib, M. Athymhormia and disorders of motivation in Basal Ganglia disease. J. Neuropsychiatry Clin. Neurosci.16, 509–524 (2004). ArticlePubMed Google Scholar
Pedersen, K. F., Alves, G., Aarsland, D. & Larsen, J. P. Occurrence and risk factors for apathy in Parkinson disease: a 4-year prospective longitudinal study. J. Neurol. Neurosurg. Psychiatr.80, 1279–1282 (2009). ArticleCAS Google Scholar
Voon, V. et al. Chronic dopaminergic stimulation in Parkinson's disease: from dyskinesias to impulse control disorders. Lancet Neurol.8, 1140–1149 (2009). ArticleCASPubMed Google Scholar
Niv, Y., Daw, N. D., Joel, D. & Dayan, P. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology (Berlin)191, 507–520 (2007). ArticleCAS Google Scholar
Tepper, J. M. & Bolam, J. P. Functional diversity and specificity of neostriatal interneurons. Curr. Opin. Neurobiol.14, 685–692 (2004). ArticleCASPubMed Google Scholar
Bergman, H., Wichmann, T., Karmon, B. & DeLong, M. R. in The Basal Ganglia IV: New Ideas and Data on Structure and Function (eds Percheron, G., McKenzie, J. S. & Feger, J.) 317–325 (Plenum Press, New York, 1994). Book Google Scholar
Darvas, M. & Palmiter, R. D. Restriction of dopamine signaling to the dorsolateral striatum is sufficient for many cognitive behaviors. Proc. Natl Acad. Sci. USA106, 14664–14669 (2009). ArticleCASPubMedPubMed Central Google Scholar
Jubault, T., Monetta, L., Strafella, A. P., Lafontaine, A. L. & Monchi, O. L-dopa medication in Parkinson's disease restores activity in the motor cortico-striatal loop but does not modify the cognitive network. PLoS ONE4, e6154 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Obeso, J. A. et al. What can man do without basal ganglia motor output? The effect of combined unilateral subthalamotomy and pallidotomy in a patient with Parkinson's disease. Exp. Neurol.220, 283–292 (2009). ArticleCASPubMed Google Scholar
de Wit, S., Barker, R. A., Dickinson, A. D. & Cools, R. Habitual versus goal-directed action control in Parkinson disease. J. Cogn. Neurosci. 30 Apr 2010 (doi: 10.1162/jocn.2010.21514). ArticlePubMed Google Scholar
Graybiel, A. M. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci.31, 359–387 (2008). An excellent review of habitual behaviour. ArticleCASPubMed Google Scholar
DeLong, M. & Wichmann, T. Changing views of basal ganglia circuits and circuit disorders. Clin. EEG Neurosci.41, 61–67 (2010). ArticlePubMedPubMed Central Google Scholar
Draganski, B. & Bhatia, K. P. Brain structure in movement disorders: a neuroimaging perspective. Curr. Opin. Neurol.23, 413–419 (2010). ArticlePubMed Google Scholar
Wilson, S. A. K. Progressive lenticular degeneratio. A familial nervous disease associated with cirrhosis of the liver. Brain34, 295–507 (1912). Article Google Scholar
Wilson, S. A. K. Disorders of motility and tone. Lancet Neurol.1, 1–103 (1925). Google Scholar
Purdon Martin, J. Hemichorea resulting from a local lesion of the brain. (The syndrome of the body of Luys). Brain50, 637–651 (1927). Article Google Scholar
Purdon Martin, J. & Alcock, N. S. Hemichorea associated with a lesion of the corput Luysii. Brain57, 504–516 (1934). Article Google Scholar
Denny-Brown, D. The Basal Ganglia (Oxford Univ. Press, Oxford, 1962). Google Scholar
Carpenter, M. B., Whittier, J. R. & Mettler, F. A. Analysis of choreoid hyperkinesia in the Rhesus monkey; surgical and pharmacological analysis of hyperkinesia resulting from lesions in the subthalamic nucleus of Luys. J. Comp. Neurol.92, 293–331 (1950). ArticleCASPubMed Google Scholar
Martin, J. P. & McCaul, I. R. Acute hemiballismus treated by ventrolateral thalamolysis. Brain82, 104–108 (1959). ArticleCASPubMed Google Scholar
Ehringer, H. & Hornykiewicz, O. Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Klin. Wochenschr.38, 1236–1239 (1960). ArticleCASPubMed Google Scholar
Birkmayer, W. & Hornykiewicz, O. The L-3,4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia. Wien Klin. Wochenschr.73, 787–788 (1961). CASPubMed Google Scholar
Cotzias, G. C., Papavasiliou, P. S. & Gellene, R. L-dopa in Parkinson's syndrome. N. Engl. J. Med.281, 272 (1969). CASPubMed Google Scholar
Fahn, S. The history of dopamine and levodopa in the treatment of Parkinson's disease. Mov. Disord.23, S497–S508 (2008). ArticlePubMed Google Scholar
Denny-Brown, D. & Yanagisawa, N. in The Basal Ganglia (ed. Yahr, M. D.) 145 (Raven Press, New York, 1976). Google Scholar
Hassler, R. Striatal control of locomotion, intentional actions and of integrating and perceptive activity. J. Neurol. Sci.36, 187–224 (1978). ArticleCASPubMed Google Scholar
Haber, S. N. The primate basal ganglia: parallel and integrative networks. J. Chem. Neuroanat.26, 317–330 (2003). ArticlePubMed Google Scholar
Alexander, G. E. in Handbook of Brain Theory and Neural Networks (ed. Arbib, M. A.) 139–144 (MIT Press, Cambridge, Massachusetts, 1995). Google Scholar