Hippocampal synaptic plasticity, spatial memory and anxiety (original) (raw)
O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, 1978). Google Scholar
Burgess, N., Maguire, E. A. & O'Keefe, J. The human hippocampus and spatial and episodic memory. Neuron35, 625–641 (2002). CASPubMed Google Scholar
Olton, D. S. & Samuelson, R. J. Remembrance of places passed — spatial memory in rats. J. Exp. Psychol. Anim. Behav. Process.2, 97–116 (1976). Google Scholar
Morris, R. G., Garrud, P., Rawlins, J. N. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature297, 681–683 (1982). CASPubMed Google Scholar
Morris, R. G., Schenk, F., Tweedie, F. & Jarrard, L. E. Ibotenate lesions of hippocampus and/or subiculum: dissociating components of allocentric spatial learning. Eur. J. Neurosci.2, 1016–1028 (1990). PubMed Google Scholar
Rawlins, J. N. & Olton, D. S. The septo-hippocampal system and cognitive mapping. Behav. Brain Res.5, 331–358 (1982). CASPubMed Google Scholar
O'Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res.34, 171–175 (1971). CASPubMed Google Scholar
Maguire, E. A. et al. Knowing where and getting there: a human navigation network. Science280, 921–924 (1998). CASPubMed Google Scholar
Maguire, E. A., Burgess, N. & O'Keefe, J. Human spatial navigation: cognitive maps, sexual dimorphism, and neural substrates. Curr. Opin. Neurobiol.9, 171–177 (1999). CASPubMed Google Scholar
Sanderson, D. J. et al. Enhanced long-term and impaired short-term spatial memory in GluA1 AMPA receptor subunit knockout mice: evidence for a dual-process memory model. Learn. Mem.16, 379–386 (2009). CASPubMedPubMed Central Google Scholar
Sanderson, D. J. & Bannerman, D. M. The role of habituation in hippocampus-dependent spatial working memory tasks: evidence from GluA1 AMPA receptor subunit knockout mice. Hippocampus22, 981–994 (2012). CASPubMed Google Scholar
Fyhn, M., Molden, S., Witter, M. P., Moser, E. I. & Moser, M. B. Spatial representation in the entorhinal cortex. Science305, 1258–1264 (2004). CASPubMed Google Scholar
Hafting, T., Fyhn, M., Molden, S., Moser, M. B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature436, 801–806 (2005). CASPubMed Google Scholar
Taube, J. S., Muller, R. U. & Ranck, J. B. Jr. Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J. Neurosci.10, 436–447 (1990). CASPubMed Google Scholar
Taube, J. S., Muller, R. U. & Ranck, J. B. Jr. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci.10, 420–435 (1990). CASPubMed Google Scholar
Savelli, F., Yoganarasimha, D. & Knierim, J. J. Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus18, 1270–1282 (2008). PubMedPubMed Central Google Scholar
Solstad, T., Boccara, C. N., Kropff, E., Moser, M. B. & Moser, E. I. Representation of geometric borders in the entorhinal cortex. Science322, 1865–1868 (2008). CASPubMed Google Scholar
Lever, C., Burton, S., Jeewajee, A., O'Keefe, J. & Burgess, N. Boundary vector cells in the subiculum of the hippocampal formation. J. Neurosci.29, 9771–9777 (2009). CASPubMedPubMed Central Google Scholar
Eichenbaum, H., Stewart, C. & Morris, R. G. Hippocampal representation in place learning. J. Neurosci.10, 3531–3542 (1990). CASPubMed Google Scholar
Schmitt, W. B., Deacon, R. M., Seeburg, P. H., Rawlins, J. N. & Bannerman, D. M. A within-subjects, within-task demonstration of intact spatial reference memory and impaired spatial working memory in glutamate receptor-A-deficient mice. J. Neurosci.23, 3953–3959 (2003). CASPubMedPubMed Central Google Scholar
Hebb, D. O. The Organization of Behavior (John Wiley & Sons, 1949). Google Scholar
Hebb, D. O. Textbook of Psychology 3rd edn (W. B. Saunders Company, 1972). Google Scholar
Konorski, J. Conditioned Reflexes and Neuron Organization (Hefner, 1948). Google Scholar
Bliss, T. V. & Lømo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol.232, 331–356 (1973). CASPubMedPubMed Central Google Scholar
Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature361, 31–39 (1993). CASPubMed Google Scholar
Martin, S. J., Grimwood, P. D. & Morris, R. G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci.23, 649–711 (2000). CASPubMed Google Scholar
Keith, J. R. & Rudy, J. W. Why NMDA receptor-dependent long-term potentiation may not be a mechanism of learning and memory: re-appraisal of the NMDA receptor blockade strategy. Psychobiology18, 251–257 (1990). CAS Google Scholar
Gallistel, C. R. & Matzel, L. D. The neuroscience of learning: beyond the hebbian synapse. Annu. Rev. Psychol.64, 169–200 (2013). CASPubMed Google Scholar
Shors, T. J. & Matzel, L. D. Long-term potentiation: what's learning got to do with it? Behav. Brain Sci.20, 597–614 (1997). CASPubMed Google Scholar
Bannerman, D. M., Rawlins, J. N. P. & Good, M. A. The drugs don't work—or do they? Pharmacological and transgenic studies of the contribution of NMDA and GluR-A-containing AMPA receptors to hippocampal-dependent memory. Psychopharmacology (Berl.)188, 552–566 (2006). CAS Google Scholar
Cain, D. P., Saucier, D., Hall, J., Hargreaves, E. L. & Boon, F. Detailed behavioral analysis of water maze acquisition under APV or CNQX: contribution of sensorimotor disturbances to drug-induced acquisition deficits. Behav. Neurosci.110, 86–102 (1996). CASPubMed Google Scholar
Saucier, D. & Cain, D. P. Spatial learning without NMDA receptor-dependent long-term potentiation. Nature378, 186–189 (1995). CASPubMed Google Scholar
Bannerman, D. M. et al. Dissecting spatial knowledge from spatial choice by hippocampal NMDA receptor deletion. Nature Neurosci.15, 1153–1159 (2012). CASPubMed Google Scholar
Collingridge, G. L., Kehl, S. J. & McLennan, H. Excitatory amino acids in synaptic transmission in the Schaffer collateral–commissural pathway of the rat hippocampus. J. Physiol.334, 33–46 (1983). CASPubMedPubMed Central Google Scholar
Morris, R. G., Anderson, E., Lynch, G. S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an _N_-methyl-D-aspartate receptor antagonist, AP5. Nature319, 774–776 (1986). CASPubMed Google Scholar
Morris, R. G. Synaptic plasticity and learning: selective impairment of learning in rats and blockade of long-term potentiation in vivo by the _N_-methyl-D-aspartate receptor antagonist AP5. J. Neurosci.9, 3040–3057 (1989). CASPubMed Google Scholar
Davis, S., Butcher, S. P. & Morris, R. G. The NMDA receptor antagonist D-2-amino-5- phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro. J. Neurosci.12, 21–34 (1992). CASPubMed Google Scholar
Bannerman, D. M., Good, M. A., Butcher, S. P., Ramsay, M. & Morris, R. G. Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature378, 182–186 (1995). CASPubMed Google Scholar
Laube, B., Kuhse, J. & Betz, H. Evidence for a tetrameric structure of recombinant NMDA receptors. J. Neurosci.18, 2954–2961 (1998). CASPubMed Google Scholar
Seeburg, P. H. The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci.16, 359–365 (1993). CASPubMed Google Scholar
Sakimura, K. et al. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor ε1 subunit. Nature373, 151–155 (1995). CASPubMed Google Scholar
Kiyama, Y. et al. Increased thresholds for long-term potentiation and contextual learning in mice lacking the NMDA-type glutamate receptor ε1 subunit. J. Neurosci.18, 6704–6712 (1998). CASPubMed Google Scholar
Bannerman, D. M. et al. NMDA receptor subunit NR2A is required for rapidly acquired spatial working memory but not incremental spatial reference memory. J. Neurosci.28, 3623–3630 (2008). CASPubMedPubMed Central Google Scholar
Tsien, J. Z. et al. Subregion- and cell type-restricted gene knockout in mouse brain. Cell87, 1317–1326 (1996). CASPubMed Google Scholar
Tsien, J. Z., Huerta, P. T. & Tonegawa, S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell87, 1327–1338 (1996). CASPubMed Google Scholar
Wiltgen, B. J. et al. A role for calcium-permeable AMPA receptors in synaptic plasticity and learning. PLoS ONE5, e12818 (2010). PubMedPubMed Central Google Scholar
Hoeffer, C. A. et al. Removal of FKBP12 enhances mTOR-Raptor interactions, LTP, memory, and perseverative/repetitive behavior. Neuron60, 832–845 (2008). CASPubMedPubMed Central Google Scholar
Fukaya, M., Kato, A., Lovett, C., Tonegawa, S. & Watanabe, M. Retention of NMDA receptor NR2 subunits in the lumen of endoplasmic reticulum in targeted NR1 knockout mice. Proc. Natl Acad. Sci. USA100, 4855–4860 (2003). CASPubMed Google Scholar
Brigman, J. L. et al. Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J. Neurosci.30, 4590–4600 (2010). CASPubMedPubMed Central Google Scholar
Rondi-Reig, L. et al. Impaired sequential egocentric and allocentric memories in forebrain-specific-NMDA receptor knock-out mice during a new task dissociating strategies of navigation. J. Neurosci.26, 4071–4081 (2006). CASPubMedPubMed Central Google Scholar
Niewoehner, B. et al. Impaired spatial working memory but spared spatial reference memory following functional loss of NMDA receptors in the dentate gyrus. Eur. J. Neurosci.25, 837–846 (2007). CASPubMedPubMed Central Google Scholar
Taylor, A. M. B. et al. Hippocampal NMDARs are important for behavioural inhibition but not for encoding associative spatial memories. Phil. Trans. R. Soc. B369, 20130149 (2014). CASPubMed Google Scholar
Phillips, R. G. & LeDoux, J. E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci.106, 274–285 (1992). CASPubMed Google Scholar
Maren, S., Phan, K. L. & Liberzon, I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nature Rev. Neurosci.14, 417–428 (2013). CAS Google Scholar
Tsetsenis, T., Ma, X. H., Lo Iacono, L., Beck, S. G. & Gross, C. Suppression of conditioning to ambiguous cues by pharmacogenetic inhibition of the dentate gyrus. Nature Neurosci.10, 896–902 (2007). CASPubMed Google Scholar
Marr, D. Simple memory: a theory for archicortex. Phil. Trans. R. Soc. Lond. B262, 23–81 (1971). CAS Google Scholar
Rolls, E. T. A theory of hippocampal function in memory. Hippocampus6, 601–620 (1996). CASPubMed Google Scholar
O'Reilly, R. C. & McClelland, J. L. Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus4, 661–682 (1994). CASPubMed Google Scholar
McNaughton, B. L. in Neural Connection, Mental Computation (eds Nadel, L., Cooper, L. A., & Culicover, P.) 285–350 (MIT Press, 1989). Google Scholar
Rolls, E. T. & Treves, A. Neural Networks and Brain Function (Oxford Univ. Press, 1998). Google Scholar
Shapiro, M. L. & Olton, D. S. in Memory Systems (eds Schacter, D. L. & Tulving, E.) 141–146 (MIT Press, 1994). Google Scholar
Gilbert, P. E., Kesner, R. P. & Lee, I. Dissociating hippocampal subregions: double dissociation between dentate gyrus and CA1. Hippocampus11, 626–636 (2001). CASPubMed Google Scholar
McHugh, T. J. et al. Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science317, 94–99 (2007). CASPubMed Google Scholar
Clelland, C. D. et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science325, 210–213 (2009). CASPubMedPubMed Central Google Scholar
Groves, J. O. L. et al. Ablating adult neurogenesis in the rat has no effect on spatial processing: evidence from a novel pharmacogenetic rat model. PLoS Genet.9, e1003718 (2013). CASPubMedPubMed Central Google Scholar
Morris, R. G., Davis, S. & Butcher, S. P. Hippocampal synaptic plasticity and NMDA receptors: a role in information storage? Phil. Trans. R. Soc. Lond. B329, 187–204 (1990). CAS Google Scholar
von Engelhardt, J. et al. Contribution of hippocampal and extra-hippocampal NR2B-containing NMDA receptors to performance on spatial learning tasks. Neuron60, 846–860 (2008). CASPubMed Google Scholar
Steele, R. J. & Morris, R. G. Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus9, 118–136 (1999). CASPubMed Google Scholar
Nakazawa, K. et al. Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience. Neuron38, 305–315 (2003). CASPubMed Google Scholar
Nakazawa, K. et al. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science297, 211–218 (2002). CASPubMedPubMed Central Google Scholar
Grover, L. M. & Teyler, T. J. _N_-methyl-D-aspartate receptor-independent long-term potentiation in area CA1 of rat hippocampus: input-specific induction and preclusion in a non-tetanized pathway. Neuroscience49, 7–11 (1992). CASPubMed Google Scholar
Silva, A. J. Molecular and cellular cognitive studies of the role of synaptic plasticity in memory. J. Neurobiol.54, 224–237 (2003). CASPubMed Google Scholar
Steffenach, H. A., Witter, M., Moser, M. B. & Moser, E. I. Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron45, 301–313 (2005). CASPubMed Google Scholar
Mariano, T. Y. et al. Impulsive choice in hippocampal but not orbitofrontal cortex-lesioned rats on a nonspatial decision-making maze task. Eur. J. Neurosci.30, 472–484 (2009). CASPubMedPubMed Central Google Scholar
Bannerman, D. M. et al. Double dissociation of function within the hippocampus: a comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions. Behav. Neurosci.113, 1170–1188 (1999). CASPubMed Google Scholar
Fortin, N. J., Agster, K. L. & Eichenbaum, H. B. Critical role of the hippocampus in memory for sequences of events. Nature Neurosci.5, 458–462 (2002). CASPubMed Google Scholar
Kesner, R. P., Gilbert, P. E. & Barua, L. A. The role of the hippocampus in memory for the temporal order of a sequence of odors. Behav. Neurosci.116, 286–290 (2002). PubMed Google Scholar
Marshall, V. J., McGregor, A., Good, M. & Honey, R. C. Hippocampal lesions modulate both associative and nonassociative priming. Behav. Neurosci.118, 377–382 (2004). CASPubMed Google Scholar
Honey, R. C. & Good, M. Associative modulation of the orienting response: distinct effects revealed by hippocampal lesions. J. Exp. Psychol. Anim. Behav. Process26, 3–14 (2000). CASPubMed Google Scholar
Gray, J. A. The Neuropsychology of Anxiety 1st edn (Oxford Univ. Press, 1982). Google Scholar
Gray, J. A. & McNaughton, N. The Neuropsychology of Anxiety 2nd edn (Oxford Univ. Press, 2000). Google Scholar
Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science301, 805–809 (2003). CASPubMed Google Scholar
Holick, K. A., Lee, D. C., Hen, R. & Dulawa, S. C. Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology33, 406–417 (2008). CASPubMed Google Scholar
Deacon, R. M., Bannerman, D. M. & Rawlins, J. N. Anxiolytic effects of cytotoxic hippocampal lesions in rats. Behav. Neurosci.116, 494–497 (2002). PubMed Google Scholar
Treit, D. & Menard, J. Dissociations among the anxiolytic effects of septal, hippocampal, and amygdaloid lesions. Behav. Neurosci.111, 653–658 (1997). CASPubMed Google Scholar
Barkus, C. et al. Hippocampal NMDA receptors and anxiety: at the interface between cognition and emotion. Eur. J. Pharmacol.626, 49–56 (2010). CASPubMedPubMed Central Google Scholar
Witter, M. P. A survey of the anatomy of the hippocampal formation, with emphasis on the septotemporal organization of its intrinsic and extrinsic connections. Adv. Exp. Med. Biol.203, 67–82 (1986). CASPubMed Google Scholar
Siegel, A. & Tassoni, J. P. Differential efferent projections from the ventral and dorsal hippocampus of the cat. Brain, Behav. Evol.4, 185–200 (1971). CAS Google Scholar
Moser, M. B. & Moser, E. I. Functional differentiation in the hippocampus. Hippocampus8, 608–619 (1998). CASPubMed Google Scholar
Swanson, L. W. & Cowan, W. M. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J. Comp. Neurol.172, 49–84 (1977). CASPubMed Google Scholar
Moser, E., Moser, M. B. & Andersen, P. Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. J. Neurosci.13, 3916–3925 (1993). CASPubMed Google Scholar
Moser, M. B., Moser, E. I., Forrest, E., Andersen, P. & Morris, R. G. Spatial learning with a minislab in the dorsal hippocampus. Proc. Natl Acad. Sci. USA92, 9697–9701 (1995). CASPubMed Google Scholar
Hock, B. J. Jr & Bunsey, M. D. Differential effects of dorsal and ventral hippocampal lesions. J. Neurosci.18, 7027–7032 (1998). CASPubMed Google Scholar
Bannerman, D. M. et al. Double dissociation of function within the hippocampus: spatial memory and hyponeophagia. Behav. Neurosci.116, 884–901 (2002). CASPubMed Google Scholar
Pothuizen, H. H., Zhang, W. N., Jongen-Relo, A. L., Feldon, J. & Yee, B. K. Dissociation of function between the dorsal and the ventral hippocampus in spatial learning abilities of the rat: a within-subject, within-task comparison of reference and working spatial memory. Eur. J. Neurosci.19, 705–712 (2004). PubMed Google Scholar
Bannerman, D. M. et al. Ventral hippocampal lesions affect anxiety but not spatial learning. Behav. Brain Res.139, 197–213 (2003). CASPubMed Google Scholar
Kjelstrup, K. G. et al. Reduced fear expression after lesions of the ventral hippocampus. Proc. Natl Acad. Sci. USA99, 10825–10830 (2002). CASPubMed Google Scholar
McHugh, S. B., Deacon, R. M., Rawlins, J. N. & Bannerman, D. M. Amygdala and ventral hippocampus contribute differentially to mechanisms of fear and anxiety. Behav. Neurosci.118, 63–78 (2004). CASPubMed Google Scholar
Chudasama, Y., Wright, K. S. & Murray, E. A. Hippocampal lesions in rhesus monkeys disrupt emotional responses but not reinforcer devaluation effects. Biol. Psychiatry63, 1084–1091 (2008). PubMed Google Scholar
Pentkowski, N. S., Blanchard, D. C., Lever, C., Litvin, Y. & Blanchard, R. J. Effects of lesions to the dorsal and ventral hippocampus on defensive behaviors in rats. Eur. J. Neurosci.23, 2185–2196 (2006). PubMed Google Scholar
Maren, S. Neurotoxic or electrolytic lesions of the ventral subiculum produce deficits in the acquisition and expression of Pavlovian fear conditioning in rats. Behav. Neurosci.113, 283–290 (1999). CASPubMed Google Scholar
Richmond, M. A. et al. Dissociating context and space within the hippocampus: effects of complete, dorsal, and ventral excitotoxic hippocampal lesions on conditioned freezing and spatial learning. Behav. Neurosci.113, 1189–1203 (1999). CASPubMed Google Scholar
McHugh, S. B., Campbell, T. G., Taylor, A. M., Rawlins, J. N. & Bannerman, D. M. A role for dorsal and ventral hippocampus in inter-temporal choice cost–benefit decision making. Behav. Neurosci.122, 1–8 (2008). CASPubMedPubMed Central Google Scholar
Hartley, T., Maguire, E. A., Spiers, H. J. & Burgess, N. The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron37, 877–888 (2003). CASPubMed Google Scholar
Kumaran, D. & Maguire, E. A. The human hippocampus: cognitive maps or relational memory? J. Neurosci.25, 7254–7259 (2005). CASPubMedPubMed Central Google Scholar
Maguire, E. A., Frackowiak, R. S. & Frith, C. D. Recalling routes around london: activation of the right hippocampus in taxi drivers. J. Neurosci.17, 7103–7110 (1997). CASPubMed Google Scholar
Maguire, E. A. et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl Acad. Sci. USA97, 4398–4403 (2000). CASPubMed Google Scholar
Alvarez, R. P., Biggs, A., Chen, G., Pine, D. S. & Grillon, C. Contextual fear conditioning in humans: cortical-hippocampal and amygdala contributions. J. Neurosci.28, 6211–6219 (2008). CASPubMedPubMed Central Google Scholar
Fanselow, M. S. & Dong, H. W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron65, 7–19 (2010). CASPubMedPubMed Central Google Scholar
Bast, T., Wilson, I. A., Witter, M. P. & Morris, R. G. From rapid place learning to behavioral performance: a key role for the intermediate hippocampus. PLoS Biol.7, e1000089 (2009). PubMedPubMed Central Google Scholar
Vinogradova, O. S. in The Hippocampus Vol. 2 (eds Isaacson, R. I. & Pribram, K. H.) 3–69 (Plenum, 1975). Google Scholar
Jarrard, L. & Isaacson, R. L. Runway response perseveration in the hippocampectomised rat: determined by extinction variables. Nature207, 109–110 (1965). Google Scholar
Clark, C. V. & Isaacson, R. L. Effect of bilateral hippocampal ablation on Drl performance. J. Comp. Physiol. Psychol.59, 137–140 (1965). CASPubMed Google Scholar
Douglas, R. J. The hippocampus and behavior. Psychol. Bull.67, 416–422 (1967). CASPubMed Google Scholar
Davidson, T. L. & Jarrard, L. E. The hippocampus and inhibitory learning: a 'Gray' area? Neurosci. Biobehav Rev.28, 261–271 (2004). CASPubMed Google Scholar
Kimble, D. P. & Kimble, R. J. Hippocampectomy and response perseveration in the rat. J. Comp. Physiol. Psychol.60, 474–476 (1965). CASPubMed Google Scholar
Lisman, J. E. & Grace, A. A. The hippocampal–VTA loop: controlling the entry of information into long-term memory. Neuron46, 703–713 (2005). CASPubMed Google Scholar
Hollerman, J. R. & Schultz, W. Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neurosci.1, 304–309 (1998). CASPubMed Google Scholar
Ploghaus, A. et al. Learning about pain: the neural substrate of the prediction error for aversive events. Proc. Natl Acad. Sci. USA97, 9281–9286 (2000). CASPubMed Google Scholar
Han, J. S., Gallagher, M. & Holland, P. Hippocampal lesions disrupt decrements but not increments in conditioned stimulus processing. J. Neurosci.15, 7323–7329 (1995). CASPubMed Google Scholar
Kumaran, D. & Maguire, E. A. Match mismatch processes underlie human hippocampal responses to associative novelty. J. Neurosci.27, 8517–8524 (2007). CASPubMedPubMed Central Google Scholar
Kumaran, D. & Maguire, E. A. An unexpected sequence of events: mismatch detection in the human hippocampus. PLoS Biol.4, e424 (2006). PubMedPubMed Central Google Scholar
O'Keefe, J. Place units in the hippocampus of the freely moving rat. Exp. Neurol.51, 78–109 (1976). CASPubMed Google Scholar
Fyhn, M., Molden, S., Hollup, S., Moser, M. B. & Moser, E. Hippocampal neurons responding to first-time dislocation of a target object. Neuron35, 555–566 (2002). CASPubMed Google Scholar
Honey, R. C. & Good, M. Associative components of recognition memory. Curr. Opin. Neurobiol.10, 200–204 (2000). CASPubMed Google Scholar
Honey, R. C., Watt, A. & Good, M. Hippocampal lesions disrupt an associative mismatch process. J. Neurosci.18, 2226–2230 (1998). CASPubMed Google Scholar
Resnik, E., McFarland, J. M., Sprengel, R., Sakmann, B. & Mehta, M. R. The effects of GluA1 deletion on the hippocampal population code for position. J. Neurosci.32, 8952–8968 (2012). CASPubMedPubMed Central Google Scholar
Reisel, D. et al. Spatial memory dissociations in mice lacking GluR1. Nature Neurosci.5, 868–873 (2002). CASPubMed Google Scholar
Zamanillo, D. et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science284, 1805–1811 (1999). CASPubMed Google Scholar
Korotkova, T., Fuchs, E. C., Ponomarenko, A., von Engelhardt, J. & Monyer, H. NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron68, 557–569 (2010). CASPubMed Google Scholar
Allen, K., Fuchs, E. C., Jaschonek, H., Bannerman, D. M. & Monyer, H. Gap junctions between interneurons are required for normal spatial coding in the hippocampus and short-term spatial memory. J. Neurosci.31, 6542–6552 (2011). CASPubMedPubMed Central Google Scholar
Caputi, A., Fuchs, E. C., Allen, K., Le Magueresse, C. & Monyer, H. Selective reduction of AMPA currents onto hippocampal interneurons impairs network oscillatory activity. PLoS ONE7, e37318 (2012). CASPubMedPubMed Central Google Scholar
Lisman, J. E. Role of the dual entorhinal inputs to hippocampus: a hypothesis based on cue/action (non-self/self) couplets. Prog. Brain Res.163, 615–625 (2007). PubMed Google Scholar
Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci.25, 103–126 (2002). CASPubMed Google Scholar
Erickson, M. A., Maramara, L. A. & Lisman, J. A single brief burst induces GluR1-dependent associative short-term potentiation: a potential mechanism for short-term memory. J. Cogn. Neurosci.22, 2530–2540 (2010). PubMedPubMed Central Google Scholar
Hoffman, D. A., Sprengel, R. & Sakmann, B. Molecular dissection of hippocampal theta-burst pairing potentiation. Proc. Natl Acad. Sci. USA99, 7740–7745 (2002). CASPubMed Google Scholar
Romberg, C. et al. Induction and expression of GluA1 (GluR-A)-independent LTP in the hippocampus. Eur. J. Neurosci.29, 1141–1152 (2009). PubMedPubMed Central Google Scholar
Schmitt, W. B. et al. Restoration of spatial working memory by genetic rescue of GluR-A-deficient mice. Nature Neurosci.8, 270–272 (2005). CASPubMed Google Scholar
Sanderson, D. J. et al. Deletion of glutamate receptor-A (GluR-A) AMPA receptor subunits impairs one-trial spatial memory. Behav. Neurosci.121, 559–569 (2007). CASPubMed Google Scholar
Sanderson, D. J. et al. Deletion of the GluA1 AMPA receptor subunit impairs recency-dependent object recognition memory. Learn. Mem.18, 181–190 (2011). CASPubMedPubMed Central Google Scholar
Sanderson, D. J., Sprengel, R., Seeburg, P. H. & Bannerman, D. M. Deletion of the GluA1 AMPA receptor subunit alters the expression of short-term memory. Learn. Mem.18, 128–131 (2011). CASPubMedPubMed Central Google Scholar
Wagner, A. R. in Information Processing in Animals: Memory Mechanisms (eds Spear, N. E. & Miller, R. R.) 5–47 (Erlbaum, 1981). Google Scholar
Brandon, S. E., Vogel, E. H. & Wagner, A. R. Stimulus representation in SOP: I. theoretical rationalization and some implications. Behav. Processes62, 5–25 (2003). PubMed Google Scholar
Fuchs, E. C. et al. Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron53, 591–604 (2007). CASPubMed Google Scholar
Murray, A. J. et al. Parvalbumin-positive CA1 interneurons are required for spatial working but not for reference memory. Nature Neurosci.14, 297–299 (2011). CASPubMed Google Scholar
Gray, C. M. & Singer, W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl Acad. Sci. USA86, 1698–1702 (1989). CASPubMed Google Scholar
Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G. & Buzsaki, G. Organization of cell assemblies in the hippocampus. Nature424, 552–556 (2003). CASPubMed Google Scholar
Wilson, M. A. & McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science261, 1055–1058 (1993). CASPubMed Google Scholar