Molecular mechanisms in the regulation of adult neurogenesis during stress (original) (raw)
Spalding, K. L. et al. Dynamics of hippocampal neurogenesis in adult humans. Cell153, 1219–1227 (2013). The authors take advantage of known fluctuations in atmospheric14C to quantify the rate of adult hippocampal neurogenesis in humans. ArticleCASPubMedPubMed Central Google Scholar
Welberg, L. A bombshell of a finding. Nature Rev. Neurosci.14, 522 (2013). ArticleCAS Google Scholar
Kempermann, G. New neurons for 'survival of the fittest'. Nature Rev. Neurosci.13, 727–736 (2012). ArticleCAS Google Scholar
Cameron, H. A. & Gould, E. Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience61, 203–209 (1994). The first paper to investigate the possible link between stress and neurogenesis. ArticleCASPubMed Google Scholar
Gould, E., McEwen, B. S., Tanapat, P., Galea, L. A. & Fuchs, E. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J. Neurosci.17, 2492–2498 (1997). ArticleCASPubMedPubMed Central Google Scholar
Gould, E., Tanapat, P., McEwen, B. S., Flügge, G. & Fuchs, E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc. Natl Acad. Sci. USA95, 3168–3171 (1998). ArticleCASPubMedPubMed Central Google Scholar
Schoenfeld, T. J. & Gould, E. Stress, stress hormones, and adult neurogenesis. Exp. Neurol.233, 12–21 (2012). ArticleCASPubMed Google Scholar
Tanapat, P., Hastings, N. B., Rydel, T. A., Galea, L. A. M. & Gould, E. Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. J. Comp. Neurol.437, 496–504 (2001). ArticleCASPubMed Google Scholar
Czéh, B. et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc. Natl Acad. Sci. USA98, 12796–12801 (2001). ArticlePubMedPubMed Central Google Scholar
Czéh, B. & Lucassen, P. J. What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? Eur. Arch. Psychiatry Clin. Neurosci.257, 250–260 (2007). ArticlePubMed Google Scholar
Ferragud, A. et al. Enhanced habit-based learning and decreased neurogenesis in the adult hippocampus in a murine model of chronic social stress. Behav. Brain Res.210, 134–139 (2010). ArticleCASPubMed Google Scholar
Pham, K., Nacher, J., Hof, P. R. & McEwen, B. S. Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur. J. Neurosci.17, 879–886 (2003). ArticlePubMed Google Scholar
Wong, E. Y. H. & Herbert, J. The corticoid environment: a determining factor for neural progenitors' survival in the adult hippocampus. Eur. J. Neurosci.20, 2491–2498 (2004). ArticlePubMedPubMed Central Google Scholar
Mineur, Y. S., Belzung, C. & Crusio, W. E. Functional implications of decreases in neurogenesis following chronic mild stress in mice. Neuroscience150, 251–259 (2007). ArticleCASPubMed Google Scholar
Petrik, D., Lagace, D. C. & Eisch, A. J. The neurogenesis hypothesis of affective and anxiety disorders: are we mistaking the scaffolding for the building? Neuropharmacology62, 21–34 (2011). A critical but balanced review of the correlations between neurogenesis, stress and depression; it summarizes the major findings up to the time of publication. ArticlePubMedPubMed CentralCAS Google Scholar
Snyder, J. S., Soumier, A., Brewer, M., Pickel, J. & Cameron, H. A. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature476, 458–461 (2011). A pivotal paper on the role of adult neurogenesis in the regulation of the stress response. ArticleCASPubMedPubMed Central Google Scholar
Sahay, A., Wilson, D. A. & Hen, R. Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron70, 582–588 (2011). ArticleCASPubMedPubMed Central Google Scholar
Aimone, J. B., Deng, W. & Gage, F. H. Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron70, 589–596 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kheirbek, M. A., Klemenhagen, K. C., Sahay, A. & Hen, R. Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nature Neurosci.15, 1613–1620 (2012). A review on the role of neurogenesis in hippocampal function, particularly on the role of pattern separation in certain behavioural functions such as overgeneralization. ArticleCASPubMed Google Scholar
Christian, K. M., Song, H. & Ming, G.-L. Functions and dysfunctions of adult hippocampal neurogenesis. Annu. Rev. Neurosci.37, 243–262 (2014). ArticleCASPubMedPubMed Central Google Scholar
Temprana, S. G. et al. Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells. Neuron85, 116–130 (2015). This paper investigates novel properties of newborn neurons and demonstrates how these properties may enable specific functions related to information processing. ArticleCASPubMed Google Scholar
Kirby, E. D. et al. Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2. eLife2, e00362 (2013). ArticlePubMedPubMed Central Google Scholar
Kronenberg, G. et al. Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol. Aging27, 1505–1513 (2006). ArticlePubMed Google Scholar
Leuner, B., Glasper, E. R. & Gould, E. Sexual experience promotes adult neurogenesis in the hippocampus despite an initial elevation in stress hormones. PLoS ONE5, e11597 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
De Kloet, E. R., Joëls, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nature Rev. Neurosci.6, 463–475 (2005). ArticleCAS Google Scholar
Cameron, H. A., Woolley, C. S. & Gould, E. Adrenal steroid receptor immunoreactivity in cells born in the adult rat dentate gyrus. Brain Res.611, 342–346 (1993). ArticleCASPubMed Google Scholar
Garcia, A., Steiner, B., Kronenberg, G., Bick-Sander, A. & Kempermann, G. Age-dependent expression of glucocorticoid- and mineralocorticoid receptors on neural precursor cell populations in the adult murine hippocampus. Aging Cell3, 363–371 (2004). ArticleCASPubMed Google Scholar
Wong, E. Y. H. & Herbert, J. Raised circulating corticosterone inhibits neuronal differentiation of progenitor cells in the adult hippocampus. Neuroscience137, 83–92 (2006). ArticleCASPubMed Google Scholar
Hellsten, J. et al. Electroconvulsive seizures increase hippocampal neurogenesis after chronic corticosterone treatment. Eur. J. Neurosci.16, 283–290 (2002). ArticlePubMed Google Scholar
Murray, F., Smith, D. W. & Hutson, P. H. Chronic low dose corticosterone exposure decreased hippocampal cell proliferation, volume and induced anxiety and depression like behaviours in mice. Eur. J. Pharmacol.583, 115–127 (2008). ArticleCASPubMed Google Scholar
Anacker, C. et al. Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Mol. Psychiatry16, 738–750 (2011). ArticleCASPubMedPubMed Central Google Scholar
Mayer, J. L. et al. Brief treatment with the glucocorticoid receptor antagonist mifepristone normalises the corticosterone-induced reduction of adult hippocampal neurogenesis. J. Neuroendocrinol.18, 629–631 (2006). ArticleCASPubMed Google Scholar
Oomen, C. A., Mayer, J. L., de Kloet, E. R., Joëls, M. & Lucassen, P. J. Brief treatment with the glucocorticoid receptor antagonist mifepristone normalizes the reduction in neurogenesis after chronic stress. Eur. J. Neurosci.26, 3395–3401 (2007). ArticlePubMed Google Scholar
Wong, E. Y. H. & Herbert, J. Roles of mineralocorticoid and glucocorticoid receptors in the regulation of progenitor proliferation in the adult hippocampus. Eur. J. Neurosci.22, 785–792 (2005). ArticlePubMedPubMed Central Google Scholar
Hu, P. et al. A single-day treatment with mifepristone is sufficient to normalize chronic glucocorticoid induced suppression of hippocampal cell proliferation. PLoS ONE7, e46224 (2012). ArticleCASPubMedPubMed Central Google Scholar
Anacker, C. et al. Glucocorticoid-related molecular signaling pathways regulating hippocampal neurogenesis. Neuropsychopharmacology38, 872–883 (2013). ArticleCASPubMedPubMed Central Google Scholar
Fitzsimons, C. P. et al. Knockdown of the glucocorticoid receptor alters functional integration of newborn neurons in the adult hippocampus and impairs fear-motivated behavior. Mol. Psychiatry18, 993–1005 (2013). ArticleCASPubMed Google Scholar
Wu, Y. et al. CXCL12 increases human neural progenitor cell proliferation through Akt-1/FOXO3a signaling pathway. J. Neurochem.109, 1157–1167 (2009). ArticleCASPubMedPubMed Central Google Scholar
Graciarena, M., Depino, A. M. & Pitossi, F. J. Prenatal inflammation impairs adult neurogenesis and memory related behavior through persistent hippocampal TGFβ1 downregulation. Brain. Behav. Immun.24, 1301–1309 (2010). ArticleCASPubMed Google Scholar
Ahn, S. & Joyner, A. L. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature437, 894–897 (2005). ArticleCASPubMed Google Scholar
He, Y. et al. ALK5-dependent TGF-β signaling is a major determinant of late-stage adult neurogenesis. Nature Neurosci.17, 943–952 (2014). ArticleCASPubMed Google Scholar
Anacker, C. et al. Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proc. Natl Acad. Sci. USA110, 8708–8713 (2013). This paper (by our group) describes a series of cellular, animal and clinical studies showing that SGK1 is one of the mechanisms by which glucocorticoids affect neurogenesis, with actions both upstream and downstream of the glucocorticoid receptor. ArticleCASPubMedPubMed Central Google Scholar
Datson, N. A. et al. The transcriptional response to chronic stress and glucocorticoid receptor blockade in the hippocampal dentate gyrus. Hippocampus22, 359–371 (2012). ArticleCASPubMed Google Scholar
Frotscher, M., Haas, C. A. & Förster, E. Reelin controls granule cell migration in the dentate gyrus by acting on the radial glial scaffold. Cereb. Cortex13, 634–640 (2003). ArticlePubMed Google Scholar
Beffert, U. et al. Functional dissection of Reelin signaling by site-directed disruption of Disabled-1 adaptor binding to apolipoprotein E receptor 2: distinct roles in development and synaptic plasticity. J. Neurosci.26, 2041–2052 (2006). ArticleCASPubMedPubMed Central Google Scholar
Li, Z. et al. Myocyte enhancer factor 2C as a neurogenic and antiapoptotic transcription factor in murine embryonic stem cells. J. Neurosci.28, 6557–6568 (2008). ArticleCASPubMedPubMed Central Google Scholar
Koo, J. W. & Duman, R. S. IL-1β is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc. Natl Acad. Sci. USA105, 751–756 (2008). The first paper to examine the role of inflammation in stress-induced inhibition of neurogenesis. ArticleCASPubMedPubMed Central Google Scholar
Tozuka, Y., Fukuda, S., Namba, T., Seki, T. & Hisatsune, T. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron47, 803–815 (2005). ArticleCASPubMed Google Scholar
Lightman, S. L. et al. Hypothalamic–pituitary–adrenal function. Arch. Physiol. Biochem.110, 90–93 (2002). ArticleCASPubMed Google Scholar
Stavreva, D. A. et al. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nature Cell Biol.11, 1093–1102 (2009). ArticleCASPubMed Google Scholar
Sarabdjitsingh, R. A., Joëls, M. & de Kloet, E. R. Glucocorticoid pulsatility and rapid corticosteroid actions in the central stress response. Physiol. Behav.106, 73–80 (2012). ArticleCASPubMed Google Scholar
Huang, G.-J. & Herbert, J. Stimulation of neurogenesis in the hippocampus of the adult rat by fluoxetine requires rhythmic change in corticosterone. Biol. Psychiatry59, 619–624 (2006). ArticleCASPubMed Google Scholar
Sarabdjitsingh, R. A. et al. Recovery from disrupted ultradian glucocorticoid rhythmicity reveals a dissociation between hormonal and behavioural stress responsiveness. J. Neuroendocrinol.22, 862–871 (2010). CASPubMedPubMed Central Google Scholar
Scheff, J. D., Calvano, S. E., Lowry, S. F. & Androulakis, I. P. Transcriptional implications of ultradian glucocorticoid secretion in homeostasis and in the acute stress response. Physiol. Genomics44, 121–129 (2012). ArticleCASPubMed Google Scholar
Rankin, J., Walker, J. J., Windle, R., Lightman, S. L. & Terry, J. R. Characterizing dynamic interactions between ultradian glucocorticoid rhythmicity and acute stress using the phase response curve. PLoS ONE7, e30978 (2012). ArticleCASPubMedPubMed Central Google Scholar
Noguchi, T. et al. Regulation of glucocorticoid receptor transcription and nuclear translocation during single and repeated immobilization stress. Endocrinology151, 4344–4355 (2010). ArticleCASPubMed Google Scholar
Guidotti, G. et al. Glucocorticoid receptor and FKBP5 expression is altered following exposure to chronic stress: modulation by antidepressant treatment. Neuropsychopharmacology38, 616–627 (2013). ArticleCASPubMed Google Scholar
Cheng, L.-C., Pastrana, E., Tavazoie, M. & Doetsch, F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nature Neurosci.12, 399–408 (2009). ArticleCASPubMed Google Scholar
Vreugdenhil, E. et al. MicroRNA 18 and 124a down-regulate the glucocorticoid receptor: implications for glucocorticoid responsiveness in the brain. Endocrinology150, 2220–2228 (2009). ArticleCASPubMed Google Scholar
Uchida, S. et al. Characterization of the vulnerability to repeated stress in Fischer 344 rats: possible involvement of microRNA-mediated down-regulation of the glucocorticoid receptor. Eur. J. Neurosci.27, 2250–2261 (2008). ArticlePubMed Google Scholar
Wallace, A. D. & Cidlowski, J. A. Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J. Biol. Chem.276, 42714–42721 (2001). ArticleCASPubMed Google Scholar
Conway-Campbell, B. L. et al. Proteasome-dependent down-regulation of activated nuclear hippocampal glucocorticoid receptors determines dynamic responses to corticosterone. Endocrinology148, 5470–5477 (2007). ArticleCASPubMed Google Scholar
Mardirossian, S., Rampon, C., Salvert, D., Fort, P. & Sarda, N. Impaired hippocampal plasticity and altered neurogenesis in adult Ube3a maternal deficient mouse model for Angelman syndrome. Exp. Neurol.220, 341–348 (2009). ArticleCASPubMed Google Scholar
Godavarthi, S. K., Dey, P., Maheshwari, M. & Jana, N. R. Defective glucocorticoid hormone receptor signaling leads to increased stress and anxiety in a mouse model of Angelman syndrome. Hum. Mol. Genet.21, 1824–1834 (2012). ArticleCASPubMed Google Scholar
Ito, K. et al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-κB suppression. J. Exp. Med.203, 7–13 (2006). ArticleCASPubMedPubMed Central Google Scholar
Koo, J. W., Russo, S. J., Ferguson, D., Nestler, E. J. & Duman, R. S. Nuclear factor-κB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc. Natl Acad. Sci. USA107, 2669–2674 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tian, S., Poukka, H., Palvimo, J. J. & Jänne, O. A. Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor. Biochem. J.367, 907–911 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lin, D.-Y. et al. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell24, 341–354 (2006). ArticleCASPubMed Google Scholar
Holmstrom, S. R., Chupreta, S., So, A. Y.-L. & Iñiguez-Lluhí, J. A. SUMO-mediated inhibition of glucocorticoid receptor synergistic activity depends on stable assembly at the promoter but not on DAXX. Mol. Endocrinol.22, 2061–2075 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jewell, C. M. Mouse glucocorticoid receptor phosphorylation status influences multiple functions of the receptor protein. J. Biol. Chem.272, 9287–9293 (1997). ArticlePubMed Google Scholar
Wang, Z., Frederick, J. & Garabedian, M. J. Deciphering the phosphorylation 'code' of the glucocorticoid receptor in vivo. J. Biol. Chem.277, 26573–26580 (2002). ArticleCASPubMed Google Scholar
Yang, J., Liu, J. & DeFranco, D. B. Subnuclear trafficking of glucocorticoid receptors in vitro: chromatin recycling and nuclear export. J. Cell Biol.137, 523–538 (1997). ArticleCASPubMedPubMed Central Google Scholar
Blind, R. D. & Garabedian, M. J. Differential recruitment of glucocorticoid receptor phospho-isoforms to glucocorticoid-induced genes. J. Steroid Biochem. Mol. Biol.109, 150–157 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ismaili, N. & Garabedian, M. J. Modulation of glucocorticoid receptor function via phosphorylation. Ann. NY Acad. Sci.1024, 86–101 (2004). ArticleCASPubMed Google Scholar
Rogatsky, I., Waase, C. L. M. & Garabedian, M. J. Phosphorylation and inhibition of rat glucocorticoid receptor transcriptional activation by glycogen synthase kinase-3 (GSK-3). Species-specific differences between human and rat glucocorticoid receptor signaling as revealed through GSK-3 phosphorylation. J. Biol. Chem.273, 14315–14321 (1998). ArticleCASPubMed Google Scholar
Adzic, M. et al. Acute or chronic stress induce cell compartment-specific phosphorylation of glucocorticoid receptor and alter its transcriptional activity in Wistar rat brain. J. Endocrinol.202, 87–97 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bledsoe, R. K. et al. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell110, 93–105 (2002). ArticleCASPubMed Google Scholar
Freeman, B. C. & Yamamoto, K. R. Disassembly of transcriptional regulatory complexes by molecular chaperones. Science296, 2232–2235 (2002). ArticleCASPubMed Google Scholar
Conway-Campbell, B. L. et al. The HSP90 molecular chaperone cycle regulates cyclical transcriptional dynamics of the glucocorticoid receptor and its coregulatory molecules CBP/p300 during ultradian ligand treatment. Mol. Endocrinol.25, 944–954 (2011). ArticleCASPubMedPubMed Central Google Scholar
Han, S. J., Lonard, D. M. & O'Malley, B. W. Multi-modulation of nuclear receptor coactivators through posttranslational modifications. Trends Endocrinol. Metab.20, 8–15 (2009). ArticleCASPubMed Google Scholar
Zalachoras, I., Houtman, R. & Meijer, O. C. Understanding stress-effects in the brain via transcriptional signal transduction pathways. Neuroscience242, 97–109 (2013). ArticleCASPubMed Google Scholar
Bierhaus, A. et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc. Natl Acad. Sci. USA100, 1920–1925 (2003). ArticleCASPubMedPubMed Central Google Scholar
Haroon, E., Raison, C. L. & Miller, A. H. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology37, 137–162 (2012). This is an extensive and very useful review on the role of inflammation in depression. ArticleCASPubMed Google Scholar
Johnson, J. D. et al. Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines. Neuroscience135, 1295–1307 (2005). ArticleCASPubMed Google Scholar
Horowitz, M., Zunszain, P. A., Anacker, C., Musaelyan, K. & Pariante, C. M. in Inflammation in Psychiatry (eds Halaris, A & Leonard, B. E.) 127–143 (Karger, 2013). Book Google Scholar
Miller, G. E. et al. A functional genomic fingerprint of chronic stress in humans: blunted glucocorticoid and increased NF-κB signaling. Biol. Psychiatry64, 266–272 (2008). ArticleCASPubMedPubMed Central Google Scholar
Grippo, A. J., Francis, J., Beltz, T. G., Felder, R. B. & Johnson, A. K. Neuroendocrine and cytokine profile of chronic mild stress-induced anhedonia. Physiol. Behav.84, 697–706 (2005). ArticleCASPubMed Google Scholar
Goshen, I. et al. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol. Psychiatry13, 717–728 (2008). ArticleCASPubMed Google Scholar
Zunszain, P. A. et al. Interleukin-1β: a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacology37, 939–949 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Green, H. F. & Nolan, Y. M. Unlocking mechanisms in interleukin-1β-induced changes in hippocampal neurogenesis — a role for GSK-3β and TLX. Transl. Psychiatry2, e194 (2012). ArticleCASPubMedPubMed Central Google Scholar
Seguin, J. A., Brennan, J., Mangano, E. & Hayley, S. Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration. Neuropsychiatr. Dis. Treat.5, 5–14 (2009). CASPubMedPubMed Central Google Scholar
Mahar, I., Bambico, F. R., Mechawar, N. & Nobrega, J. N. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci. Biobehav. Rev.38, 173–192 (2013). ArticlePubMedCAS Google Scholar
Gray, J. D., Milner, T. A. & McEwen, B. S. Dynamic plasticity: the role of glucocorticoids, brain-derived neurotrophic factor and other trophic factors. Neuroscience239, 214–227 (2013). ArticleCASPubMed Google Scholar
Donovan, M. H., Yamaguchi, M. & Eisch, A. J. Dynamic expression of TrkB receptor protein on proliferating and maturing cells in the adult mouse dentate gyrus. Hippocampus18, 435–439 (2008). ArticleCASPubMedPubMed Central Google Scholar
Schmidt, H. D. & Duman, R. S. The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav. Pharmacol.18, 391–418 (2007). ArticleCASPubMed Google Scholar
Waterhouse, E. G. et al. BDNF promotes differentiation and maturation of adult-born neurons through GABAergic transmission. J. Neurosci.32, 14318–14330 (2012). ArticlePubMedPubMed Central Google Scholar
Nowacka, M. & Obuchowicz, E. BDNF and VEGF in the pathogenesis of stress-induced affective diseases: an insight from experimental studies. Pharmacol. Rep.65, 535–546 (2013). ArticleCASPubMed Google Scholar
Jin, K. et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl Acad. Sci. USA99, 11946–11950 (2002). ArticleCASPubMedPubMed Central Google Scholar
Schänzer, A. et al. Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol.14, 237–248 (2004). ArticlePubMed Google Scholar
Segi-Nishida, E., Warner-Schmidt, J. L. & Duman, R. S. Electroconvulsive seizure and VEGF increase the proliferation of neural stem-like cells in rat hippocampus. Proc. Natl Acad. Sci. USA105, 11352–11357 (2008). ArticleCASPubMedPubMed Central Google Scholar
Fournier, N. M., Lee, B., Banasr, M., Elsayed, M. & Duman, R. S. Vascular endothelial growth factor regulates adult hippocampal cell proliferation through MEK/ERK- and PI3K/Akt-dependent signaling. Neuropharmacology63, 642–652 (2012). ArticleCASPubMedPubMed Central Google Scholar
Taylor, S. B. et al. Disruption of the neuregulin 1 gene in the rat alters HPA axis activity and behavioral responses to environmental stimuli. Physiol. Behav.104, 205–214 (2011). ArticleCASPubMed Google Scholar
Mahar, I. et al. Subchronic peripheral neuregulin-1 increases ventral hippocampal neurogenesis and induces antidepressant-like effects. PLoS ONE6, e26610 (2011). ArticleCASPubMedPubMed Central Google Scholar
Faigle, R. & Song, H. Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim. Biophys. Acta1830, 2435–2448 (2013). ArticleCASPubMed Google Scholar
Han, Y.-G. et al. Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nature Neurosci.11, 277–284 (2008). ArticleCASPubMed Google Scholar
Lai, K., Kaspar, B. K., Gage, F. H. & Schaffer, D. V. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nature Neurosci.6, 21–27 (2003). ArticleCASPubMed Google Scholar
Petrova, R., Garcia, A. D. R. & Joyner, A. L. Titration of GLI3 repressor activity by sonic hedgehog signaling is critical for maintaining multiple adult neural stem cell and astrocyte functions. J. Neurosci.33, 17490–17505 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lie, D.-C. et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature437, 1370–1375 (2005). ArticleCASPubMed Google Scholar
Matrisciano, F. et al. Induction of the Wnt antagonist Dickkopf-1 is involved in stress-induced hippocampal damage. PLoS ONE6, e16447 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wang, X. et al. Interleukin-1β mediates proliferation and differentiation of multipotent neural precursor cells through the activation of SAPK/JNK pathway. Mol. Cell. Neurosci.36, 343–354 (2007). ArticlePubMedCAS Google Scholar
Hayley, S., Poulter, M. O., Merali, Z. & Anisman, H. The pathogenesis of clinical depression: stressor- and cytokine-induced alterations of neuroplasticity. Neuroscience135, 659–678 (2005). ArticleCASPubMed Google Scholar
McKay, L. I. & Cidlowski, J. A. CBP (CREB binding protein) integrates NF-κB (nuclear factor-κB) and glucocorticoid receptor physical interactions and antagonism. Mol. Endocrinol.14, 1222–1234 (2000). CASPubMed Google Scholar
Galliher-Beckley, A. J., Williams, J. G., Collins, J. B. & Cidlowski, J. A. Glycogen synthase kinase 3β-mediated serine phosphorylation of the human glucocorticoid receptor redirects gene expression profiles. Mol. Cell. Biol.28, 7309–7322 (2008). ArticleCASPubMedPubMed Central Google Scholar
Suri, D. & Vaidya, V. A. Glucocorticoid regulation of brain-derived neurotrophic factor: relevance to hippocampal structural and functional plasticity. Neuroscience239, 196–213 (2013). ArticleCASPubMed Google Scholar
Kumamaru, E. et al. Glucocorticoid prevents brain-derived neurotrophic factor-mediated maturation of synaptic function in developing hippocampal neurons through reduction in the activity of mitogen-activated protein kinase. Mol. Endocrinol.22, 546–558 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jeanneteau, F., Garabedian, M. J. & Chao, M. V. Activation of Trk neurotrophin receptors by glucocorticoids provides a neuroprotective effect. Proc. Natl Acad. Sci. USA105, 4862–4867 (2008). This paper examines the potential crosstalk between neurotrophin signalling pathways and the glucocorticoid receptor, with potential implications for adult neurogenesis. ArticleCASPubMedPubMed Central Google Scholar
Chen, M. J. & Russo-Neustadt, A. A. Running exercise-induced up-regulation of hippocampal brain-derived neurotrophic factor is CREB-dependent. Hippocampus19, 962–972 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lambert, W. M. et al. Brain-derived neurotrophic factor signaling rewrites the glucocorticoid transcriptome via glucocorticoid receptor phosphorylation. Mol. Cell. Biol.33, 3700–3714 (2013). ArticleCASPubMedPubMed Central Google Scholar
Miller, B. R. & Hen, R. The current state of the neurogenic theory of depression and anxiety. Curr. Opin. Neurobiol.30, 51–58 (2015). ArticleCASPubMed Google Scholar
Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science301, 805–809 (2003). ArticleCASPubMed Google Scholar
Boldrini, M. et al. Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology34, 2376–2389 (2009). ArticleCASPubMed Google Scholar
Windle, R. J., Wood, S. A., Shanks, N., Lightman, S. L. & Ingram, C. D. Ultradian rhythm of basal corticosterone release in the female rat: dynamic interaction with the response to acute stress. Endocrinology139, 443–450 (1998). ArticleCASPubMed Google Scholar