Pre-eclampsia part 1: current understanding of its pathophysiology (original) (raw)
Lindheimer, M. D., Roberts, J. M., Cunningham, G. C. & Chesley, L. in Chesley's Hypertensive Disorders in Pregnancy (eds Lindheimer, M. D., Roberts, J. M. & Cunningham, G. C.), 1–24 (Elsevier, 2009). Book Google Scholar
Romero, R., Lockwood, C., Oyarzun, E. & Hobbins, J. C. Toxemia: new concepts in an old disease. Semin. Perinatol.12, 302–323 (1988). CASPubMed Google Scholar
Redman, C. W. & Sargent, I. L. Latest advances in understanding preeclampsia. Science308, 1592–1594 (2005). ArticleCASPubMed Google Scholar
Roberts, J. M. & Gammill, H. S. Preeclampsia: recent insights. Hypertension46, 1243–1249 (2005). ArticleCASPubMed Google Scholar
Steegers, E. A., von Dadelszen, P., Duvekot, J. J. & Pijnenborg, R. Pre-eclampsia. Lancet376, 631–644 (2010). ArticlePubMed Google Scholar
American College of Obstetricians and Gynecologists Task Force on Hypertension in Pregnancy, Hypertension in Pregnancy[online], (2013).
Lowe, S. A. et al. Guidelines for the management of hypertensive disorders of pregnancy 2008. Aust. NZ J. Obstet. Gynaecol.49, 242–246 (2009). Article Google Scholar
Hutcheon, J. A., Lisonkova, S. & Joseph, K. S. Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol.25, 391–403 (2011). ArticlePubMed Google Scholar
Thornton, C., Dahlen, H., Korda, A. & Hennessy, A. The incidence of preeclampsia and eclampsia and associated maternal mortality in Australia from population-linked datasets: 2000–2008 Am. J. Obstet. Gynecol.208, 476 e471–e475 (2013). ArticlePubMed Google Scholar
Adu-Bonsaffoh, K., Samuel, O. A. & Binlinla, G. Maternal deaths attributable to hypertensive disorders in a tertiary hospital in Ghana. Int. J. Gynaecol Obstet.123, 110–113 (2013). ArticlePubMed Google Scholar
Acosta-Sison, H. The relationship of hydatidiform mole to pre-eclampsia and eclampsia; a study of 85 cases. Am. J. Obstet. Gynecol.71, 1279–1282 (1956). ArticleCASPubMed Google Scholar
Young, J. The aetiology of eclampsia and albuminuria and their relation to accidental haemorrhage: (an anatomical and experimental investigation.). Proc. R. Soc. Med.7, 307–348 (1914). PubMedPubMed Central Google Scholar
Page, E. W. On the pathogenesis of pre-eclampsia and eclampsia. J. Obstet. Gynaecol Br. Commonw.79, 883–894 (1972). ArticleCASPubMed Google Scholar
Rodgers, G. M., Taylor, R. N. & Roberts, J. M. Preeclampsia is associated with a serum factor cytotoxic to human endothelial cells. Am. J. Obstet. Gynecol.159, 908–914 (1988). ArticleCASPubMed Google Scholar
Roberts, J. M., Edep, M. E., Goldfien, A. & Taylor, R. N. Sera from preeclamptic women specifically activate human umbilical vein endothelial cells in vitro: morphological and biochemical evidence. Am. J. Reprod. Immunol.27, 101–108 (1992). ArticleCASPubMed Google Scholar
Sacks, G. P., Studena, K., Sargent, K. & Redman, C. W. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am. J. Obstet. Gynecol.179, 80–86 (1998). ArticleCASPubMed Google Scholar
Redman, C. W., Sacks, G. P. & Sargent, I. L. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am. J. Obstet. Gynecol.180, 499–506 (1999). ArticleCASPubMed Google Scholar
Gervasi, M. T. et al. Phenotypic and metabolic characteristics of monocytes and granulocytes in preeclampsia. Am. J. Obstet. Gynecol.185, 792–797 (2001). ArticleCASPubMed Google Scholar
Kenny, L. C., Baker, P. N. & Cunningham, F. G. in Chesley's Hypertensive Disorders in Pregnancy (eds Lindheimer, M. D., Roberts, J. M. & Cunningham, G. C.) 335–351 (Elsevier, 2009). Book Google Scholar
Lindheimer, M. D., Roberts, J. M., Cunningham, G. C. & Chesley, L. in Chesley's Hypertensive Disorders in Pregnancy (eds Lindheimer, M. D., Roberts, J. M. & Cunningham, G. C.) 25–36 (Elsevier, 2009). Google Scholar
Chaiworapongsa, T., Chaemsaithong, P., Korzeniewski, S. J., Yeo, L. & Romero, R. Pre-eclampsia part 2: prediction, prevention and management. Nat. Rev. Nephrol.http://dx.doi.org/10.1038/nrneph.2014.103.
Lindheimer, M. D. W. Benson and Pamela Harer Seminar on History. The History of Preeclampsia and Eclampsia as Seen by a Nephrologist (2012). Google Scholar
Lever, J. C. Cases of puerperal convulsions with remarks. Guys Hosp. Rep.2, 495–517 (1843). Google Scholar
Ballantyne, J. W. Sphygmographic tracings in puerperal eclampsia. Edinburgh Med. J.30, 1007–1020 (1885). Google Scholar
Redman, C. W. & Sargent, I. L. Immunology of pre-eclampsia. Am. J. Reprod. Immunol.63, 534–543 (2010). ArticleCASPubMed Google Scholar
Dekker, G., Robillard, P. Y. & Roberts, C. The etiology of preeclampsia: the role of the father. J. Reprod. Immunol.89, 126–132 (2011). ArticlePubMed Google Scholar
Chesley, L. C., Annitto, J. E. & Cosgrove, R. A. The familial factor in toxemia of pregnancy. Obstet. Gynecol.32, 303–311 (1968). CASPubMed Google Scholar
Thornton, J. G. & Macdonald, A. M. Twin mothers, pregnancy hypertension and pre-eclampsia. Br. J. Obstet. Gynaecol.106, 570–575 (1999). ArticleCASPubMed Google Scholar
Goddard, K. A. et al. Candidate-gene association study of mothers with pre-eclampsia, and their infants, analyzing 775 SNPs in 190 genes. Hum. Hered.63, 1–16 (2007). ArticleCASPubMed Google Scholar
Parimi, N. et al. Analytical approaches to detect maternal/fetal genotype incompatibilities that increase risk of pre-eclampsia. BMC Med. Genet.9, 60 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Ward, K. & Lindheimer, M. D. in Chesley's Hypertensive Disorders in Pregnancy (eds Lindheimer, M. D., Roberts, J. M. & Cunningham, G. C.) 51–71 (Elsevier, 2009). Book Google Scholar
Zhao, L., Bracken, M. B., Dewan, A. T. & Chen, S. Association between the SERPINE1 (PAI-1) 4G/5G insertion/deletion promoter polymorphism (rs1799889) and pre-eclampsia: a systematic review and meta-analysis. Mol. Hum. Reprod.19, 136–143 (2013). ArticleCASPubMed Google Scholar
Zhao, L. et al. Genome-wide association study identifies a maternal copy-number deletion in PSG11 enriched among preeclampsia patients. BMC Pregnancy Childbirth12, 61 (2012). ArticleCASPubMedPubMed Central Google Scholar
Morgan, M. A. & Thurnau, G. R. Pregnancy-induced hypertension without proteinuria: is it true preeclampsia? South. Med. J.81, 210–213 (1988). ArticleCASPubMed Google Scholar
Barton, J. R., O'Brien, J. M., Bergauer, N. K., Jacques, D. L. & Sibai, B. M. Mild gestational hypertension remote from term: progression and outcome. Am. J. Obstet. Gynecol.184, 979–983 (2001). ArticleCASPubMed Google Scholar
Homer, C. S., Brown, M. A., Mangos, G. & Davis, G. K. Non-proteinuric pre-eclampsia: a novel risk indicator in women with gestational hypertension. J. Hypertens.26, 295–302 (2008). ArticleCASPubMed Google Scholar
Lindheimer, M. D. & Kanter, D. Interpreting abnormal proteinuria in pregnancy: the need for a more pathophysiological approach. Obstet. Gynecol.115, 365–375 (2010). ArticleCASPubMed Google Scholar
Meyer, N. L., Mercer, B. M., Friedman, S. A. & Sibai, B. M. Urinary dipstick protein: a poor predictor of absent or severe proteinuria. Am. J. Obstet. Gynecol.170, 137–141 (1994). ArticleCASPubMed Google Scholar
Kuo, V. S., Koumantakis, G. & Gallery, E. D. Proteinuria and its assessment in normal and hypertensive pregnancy. Am. J. Obstet. Gynecol.167, 723–728 (1992). ArticleCASPubMed Google Scholar
Lindow, S. W. & Davey, D. A. The variability of urinary protein and creatinine excretion in patients with gestational proteinuric hypertension. Br. J. Obstet. Gynaecol.99, 869–872 (1992). ArticleCASPubMed Google Scholar
Verdonk, K. et al. Variation of urinary protein to creatinine ratio during the day in women with suspected pre-eclampsia. BJOGhttp://dx.doi.org/10.1111/1471-0528.12803.
Cote, A. M. et al. Diagnostic accuracy of urinary spot protein:creatinine ratio for proteinuria in hypertensive pregnant women: systematic review. BMJ336, 1003–1006 (2008). ArticleCASPubMedPubMed Central Google Scholar
Thangaratinam, S. et al. Estimation of proteinuria as a predictor of complications of pre-eclampsia: a systematic review. BMC Med.7, 10 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Goodlin, R. C. Severe pre-eclampsia: another great imitator. Am. J. Obstet. Gynecol.125, 747–753 (1976). ArticleCASPubMed Google Scholar
Weinstein, L. Syndrome of hemolysis, elevated liver enzymes, and low platelet count: a severe consequence of hypertension in pregnancy. Am. J. Obstet. Gynecol.142, 159–167 (1982). ArticleCASPubMed Google Scholar
Romero, R. et al. Clinical significance of liver dysfunction in pregnancy-induced hypertension. Am. J. Perinatol.5, 146–151 (1988). ArticleCASPubMed Google Scholar
Romero, R. et al. Clinical significance, prevalence, and natural history of thrombocytopenia in pregnancy-induced hypertension. Am. J. Perinatol.6, 32–38 (1989). ArticleCASPubMed Google Scholar
Sibai, B. M. Diagnosis, controversies, and management of the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Obstet. Gynecol.103, 981–991 (2004). ArticlePubMed Google Scholar
von Dadelszen, P., Magee, L. A. & Roberts, J. M. Subclassification of preeclampsia. Hypertens. Pregnancy22, 143–148 (2003). ArticlePubMed Google Scholar
Crispi, F. et al. Predictive value of angiogenic factors and uterine artery Doppler for early- versus late-onset pre-eclampsia and intrauterine growth restriction. Ultrasound Obstet. Gynecol.31, 303–309 (2008). ArticleCASPubMed Google Scholar
Soto, E. et al. Late-onset preeclampsia is associated with an imbalance of angiogenic and anti-angiogenic factors in patients with and without placental lesions consistent with maternal underperfusion. J. Matern. Fetal Neonatal Med.25, 498–507 (2012). ArticleCASPubMed Google Scholar
Parra-Cordero, M. et al. Prediction of early and late pre-eclampsia from maternal characteristics, uterine artery Doppler and markers of vasculogenesis during first trimester of pregnancy. Ultrasound Obstet. Gynecol.41, 538–544 (2013). ArticleCASPubMed Google Scholar
Ogge, G. et al. Placental lesions associated with maternal underperfusion are more frequent in early-onset than in late-onset preeclampsia. J. Perinat. Med.39, 641–652 (2011). ArticlePubMedPubMed Central Google Scholar
Sibai, B. M. Evaluation and management of severe preeclampsia before 34 weeks' gestation. Am. J. Obstet. Gynecol.205, 191–198 (2011). ArticlePubMed Google Scholar
Ogden, E., Hildebrand, G. J. & Page, E. W. Rise of blood pressure during ischemia of gravid uterus. Proc. Soc. Exp. Bio Med.43, 49–51 (1940). Article Google Scholar
Lunell, N. O., Nylund, L. E., Lewander, R. & Sarby, B. Uteroplacental blood flow in pre-eclampsia measurements with indium-113m and a computer-linked gamma camera. Clin. Exp. Hypertens. B1, 105–117 (1982). CASPubMed Google Scholar
Brosens, I., Robertson, W. B. & Dixon, H. G. The physiological response of the vessels of the placental bed to normal pregnancy. J. Pathol. Bacteriol.93, 569–579 (1967). ArticleCASPubMed Google Scholar
Brosens, I. & Renaer, M. On the pathogenesis of placental infarcts in pre-eclampsia. J. Obstet. Gynaecol Br. Commonw.79, 794–799 (1972). ArticleCASPubMed Google Scholar
Hertig, A. T. Vascular pathology in hypertensive albuminuric toxemias of pregnancy. Clinics4, 1011–1015 (1945). Google Scholar
De Wolf, F., Robertson, W. B. & Brosens, I. The ultrastructure of acute atherosis in hypertensive pregnancy. Am. J. Obstet. Gynecol.123, 164–174 (1975). ArticleCASPubMed Google Scholar
Robertson, W. B., Brosens, I. & Dixon, H. G. The pathological resonse of the vessels of the placental bed to hypertensive pregnancy. J. Pathol. Bacteriol.93, 581–592 (1967). ArticleCASPubMed Google Scholar
Labarrere, C. A. Acute atherosis. A histopathological hallmark of immune aggression? Placenta9, 95–108 (1988). ArticleCASPubMed Google Scholar
Staff, A. C., Dechend, R. & Redman, C. W. Review: Preeclampsia, acute atherosis of the spiral arteries and future cardiovascular disease: two new hypotheses. Placenta34 (Suppl.), S73–S78 (2013). ArticlePubMed Google Scholar
Brosens, I., Pijnenborg, R., Vercruysse, L. & Romero, R. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am. J. Obstet. Gynecol.204, 193–201 (2011). ArticlePubMed Google Scholar
Khong, T. Y., Liddell, H. S. & Robertson, W. B. Defective haemochorial placentation as a cause of miscarriage: a preliminary study. Br. J. Obstet. Gynaecol.94, 649–655 (1987). ArticleCASPubMed Google Scholar
Ball, E., Bulmer, J. N., Ayis, S., Lyall, F. & Robson, S. C. Late sporadic miscarriage is associated with abnormalities in spiral artery transformation and trophoblast invasion. J. Pathol.208, 535–542 (2006). ArticleCASPubMed Google Scholar
Brosens, I. A., Robertson, W. B. & Dixon, H. G. The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet. Gynecol. Annu.1, 177–191 (1972). CASPubMed Google Scholar
Khong, T. Y., De Wolf, F., Robertson, W. B. & Brosens, I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br. J. Obstet. Gynaecol.93, 1049–1059 (1986). ArticleCASPubMed Google Scholar
Dommisse, J. & Tiltman, A. J. Placental bed biopsies in placental abruption. Br. J. Obstet. Gynaecol.99, 651–654 (1992). ArticleCASPubMed Google Scholar
Kim, Y. M. et al. Failure of physiologic transformation of the spiral arteries in patients with preterm labor and intact membranes. Am. J. Obstet. Gynecol.189, 1063–1069 (2003). ArticlePubMed Google Scholar
Kim, Y. M. et al. Failure of physiologic transformation of the spiral arteries in the placental bed in preterm premature rupture of membranes. Am. J. Obstet. Gynecol.187, 1137–1142 (2002). ArticlePubMed Google Scholar
Pijnenborg, R. & Brosens, I. in Placental Bed Disorders: Basic Science and its Translation to Obstetrics (eds Pijnenborg, R., Brosens, I. & Romero, R.) 97–108 (Cambridge University Press, 2010). Book Google Scholar
Zhou, Y., Damsky, C. H. & Fisher, S. J. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J. Clin. Invest.99, 2152–2164 (1997). ArticleCASPubMedPubMed Central Google Scholar
Rosenfeld, C. R., Roy, T. & Cox, B. E. Mechanisms modulating estrogen-induced uterine vasodilation. Vascul. Pharmacol.38, 115–125 (2002). ArticleCASPubMed Google Scholar
Osol, G. & Moore, L. G. Maternal uterine vascular remodeling during pregnancy. Microcirculation21, 38–47 (2014). ArticlePubMed Google Scholar
Burton, G. J., Watson, A. L., Hempstock, J., Skepper, J. N. & Jauniaux, E. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J. Clin. Endocrinol. Metab.87, 2954–2959 (2002). ArticleCASPubMed Google Scholar
Burton, G. J., Hempstock, J. & Jauniaux, E. Nutrition of the human fetus during the first trimester—a review. Placenta22 (Suppl. A), S70–S77 (2001). ArticlePubMed Google Scholar
Jauniaux, E. et al. Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am. J. Pathol.157, 2111–2122 (2000). ArticleCASPubMedPubMed Central Google Scholar
Genbacev, O., Joslin, R., Damsky, C. H., Polliotti, B. M. & Fisher, S. J. Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia. J. Clin. Invest.97, 540–550 (1996). ArticleCASPubMedPubMed Central Google Scholar
Caniggia, I. et al. Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFβ(3). J. Clin. Invest.105, 577–587 (2000). ArticleCASPubMedPubMed Central Google Scholar
Rajakumar, A., Brandon, H. M., Daftary, A., Ness, R. & Conrad, K. P. Evidence for the functional activity of hypoxia-inducible transcription factors overexpressed in preeclamptic placentae. Placenta25, 763–769 (2004). ArticleCASPubMed Google Scholar
Tal, R. et al. Effects of hypoxia-inducible factor-1α overexpression in pregnant mice: possible implications for preeclampsia and intrauterine growth restriction. Am. J. Pathol.177, 2950–2962 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kanasaki, K. et al. Deficiency in catechol-_O_-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia. Nature453, 1117–1121 (2008). ArticleCASPubMed Google Scholar
Palmer, K. et al. Severe early-onset preeclampsia is not associated with a change in placental catechol _O_-methyltransferase (COMT) expression. Am. J. Pathol.178, 2484–2488 (2011). ArticleCASPubMedPubMed Central Google Scholar
Seol, H. J., Cho, G. J., Oh, M. J. & Kim, H. J. 2-methoxyoestradiol levels and placental catechol-_O_-methyltransferase expression in patients with late-onset preeclampsia. Arch. Gynecol. Obstet.287, 881–886 (2013). ArticleCASPubMed Google Scholar
Redman, C. W. & Sargent, I. L. Placental stress and pre-eclampsia: a revised view. Placenta30 (Suppl. A), S38–S42 (2009). ArticlePubMedCAS Google Scholar
Brosens, J. J., Parker, M. G., McIndoe, A., Pijnenborg, R. & Brosens, I. A. A role for menstruation in preconditioning the uterus for successful pregnancy. Am. J. Obstet. Gynecol.200, 615.e1–615.e6 (2009). Article Google Scholar
Moffett, A. & Hiby, S. E. How does the maternal immune system contribute to the development of preeclampsia? Placenta28 (Suppl. A), S51–S56 (2007). ArticlePubMedCAS Google Scholar
Burton, G. J., Yung, H. W., Cindrova-Davies, T. & Charnock-Jones, D. S. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta30 (Suppl. A), S43–S48 (2009). ArticlePubMedCAS Google Scholar
Huppertz, B., Kadyrov, M. & Kingdom, J. C. Apoptosis and its role in the trophoblast. Am. J. Obstet. Gynecol.195, 29–39 (2006). ArticlePubMed Google Scholar
Redman, C. W. & Sargent, I. L. Microparticles and immunomodulation in pregnancy and pre-eclampsia. J. Reprod. Immunol.76, 61–67 (2007). ArticleCASPubMed Google Scholar
Lian, I. A. et al. Increased endoplasmic reticulum stress in decidual tissue from pregnancies complicated by fetal growth restriction with and without pre-eclampsia. Placenta32, 823–829 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cindrova-Davies, T., Spasic-Boskovic, O., Jauniaux, E., Charnock-Jones, D. S. & Burton, G. J. Nuclear factor-κB, p38, and stress-activated protein kinase mitogen-activated protein kinase signaling pathways regulate proinflammatory cytokines and apoptosis in human placental explants in response to oxidative stress: effects of antioxidant vitamins. Am. J. Pathol.170, 1511–1520 (2007). ArticleCASPubMedPubMed Central Google Scholar
Martin, C. B. Jr, McGaughey, H. S. Jr, Kaiser, I. H., Donner, M. W. & Ramsey, E. M. Intermittent functioning of the uteroplacental arteries. Am. J. Obstet. Gynecol.90, 819–823 (1964). ArticlePubMed Google Scholar
Burton, G. J., Woods, A. W., Jauniaux, E. & Kingdom, J. C. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta30, 473–482 (2009). ArticleCASPubMedPubMed Central Google Scholar
Many, A., Hubel, C. A., Fisher, S. J., Roberts, J. M. & Zhou, Y. Invasive cytotrophoblasts manifest evidence of oxidative stress in preeclampsia. Am. J. Pathol.156, 321–331 (2000). ArticleCASPubMedPubMed Central Google Scholar
Vaughan, J. E. & Walsh, S. W. Oxidative stress reproduces placental abnormalities of preeclampsia. Hypertens. Pregnancy21, 205–223 (2002). ArticleCASPubMed Google Scholar
George, E. M. & Granger, J. P. Heme oxygenase in pregnancy and preeclampsia. Curr. Opin. Nephrol. Hypertens.22, 156–162 (2013). ArticleCASPubMed Google Scholar
Zhao, H., Wong, R. J., Kalish, F. S., Nayak, N. R. & Stevenson, D. K. Effect of heme oxygenase-1 deficiency on placental development. Placenta30, 861–868 (2009). ArticleCASPubMedPubMed Central Google Scholar
Nakamura, M. et al. Cellular mRNA expressions of anti-oxidant factors in the blood of preeclamptic women. Prenat Diagn.29, 691–696 (2009). ArticleCASPubMed Google Scholar
Lash, G. E. et al. Relationship between tissue damage and heme oxygenase expression in chorionic villi of term human placenta. Am. J. Physiol. Heart Circ. Physiol.284, H160–H167 (2003). ArticleCASPubMed Google Scholar
Farina, A. et al. Gene expression in chorionic villous samples at 11 weeks' gestation from women destined to develop preeclampsia. Prenat. Diagn.28, 956–961 (2008). ArticlePubMed Google Scholar
George, E. M. et al. Induction of heme oxygenase 1 attenuates placental ischemia-induced hypertension. Hypertension57, 941–948 (2011). ArticleCASPubMed Google Scholar
Costantine, M. M. et al. Using pravastatin to improve the vascular reactivity in a mouse model of soluble fms-like tyrosine kinase-1-induced preeclampsia. Obstet. Gynecol.116, 114–120 (2010). ArticleCASPubMed Google Scholar
Gant, N. F., Chand, S., Whalley, P. J. & MacDonald, P. C. The nature of pressor responsiveness to angiotensin II in human pregnancy. Obstet. Gynecol.43, 854 (1974). CASPubMed Google Scholar
Dechend, R., Luft, F. C. & Lindheimer, M. in Chesley's Hypertensive Disorders in Pregnancy (eds Lindheimer, M. D., Roberts, J. M. & Cunningham, G. C.) 287–296 (Elsevier, 2009). Book Google Scholar
Wallukat, G. et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J. Clin. Invest.103, 945–952 (1999). ArticleCASPubMedPubMed Central Google Scholar
Dechend, R. et al. Agonistic autoantibodies to the AT1 receptor in a transgenic rat model of preeclampsia. Hypertension45, 742–746 (2005). ArticleCASPubMed Google Scholar
Parrish, M. R. et al. The effect of immune factors, tumor necrosis factor-alpha, and agonistic autoantibodies to the angiotensin II type I receptor on soluble fms-like tyrosine-1 and soluble endoglin production in response to hypertension during pregnancy. Am. J. Hypertens.23, 911–916 (2010). ArticleCASPubMed Google Scholar
Xia, Y. & Kellems, R. E. Angiotensin receptor agonistic autoantibodies and hypertension: preeclampsia and beyond. Circ. Res.113, 78–87 (2013). ArticleCASPubMedPubMed Central Google Scholar
Li, J., LaMarca, B. & Reckelhoff, J. F. A model of preeclampsia in rats: the reduced uterine perfusion pressure (RUPP) model. Am. J. Physiol. Heart Circ. Physiol.303, H1–H8 (2012). ArticleCASPubMedPubMed Central Google Scholar
Dhillion, P. et al. IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. Am. J. Physiol. Regul. Integr Comp. Physiol.303, R353–R358 (2012). ArticleCASPubMedPubMed Central Google Scholar
Girardi, G., Yarilin, D., Thurman, J. M., Holers, V. M. & Salmon, J. E. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J. Exp. Med.203, 2165–2175 (2006). ArticleCASPubMedPubMed Central Google Scholar
Herse, F. & LaMarca, B. Angiotensin II type 1 receptor autoantibody (AT1-AA)-mediated pregnancy hypertension. Am. J. Reprod. Immunol.69, 413–418 (2013). ArticleCASPubMed Google Scholar
Novotny, S. R. et al. Activating autoantibodies to the angiotensin II type I receptor play an important role in mediating hypertension in response to adoptive transfer of CD4+ T lymphocytes from placental ischemic rats. Am. J. Physiol. Regul. Integr Comp. Physiol.302, R1197–1201 (2012). ArticleCASPubMedPubMed Central Google Scholar
Herse, F. et al. Prevalence of agonistic autoantibodies against the angiotensin II type 1 receptor and soluble fms-like tyrosine kinase 1 in a gestational age-matched case study. Hypertension53, 393–398 (2009). ArticleCASPubMed Google Scholar
Stepan, H., Wallukat, G., Schultheiss, H. P., Faber, R. & Walther, T. Is parvovirus B19 the cause for autoimmunity against the angiotensin II type receptor? J. Reprod. Immunol.73, 130–134 (2007). ArticleCASPubMed Google Scholar
Naccasha, N. et al. Phenotypic and metabolic characteristics of monocytes and granulocytes in normal pregnancy and maternal infection. Am. J. Obstet. Gynecol.185, 1118–1123 (2001). ArticleCASPubMed Google Scholar
Lau, S. Y. et al. Tumor necrosis factor-α, interleukin-6, and interleukin-10 levels are altered in preeclampsia: a systematic review and meta-analysis. Am. J. Reprod. Immunol.70, 412–427 (2013). CASPubMed Google Scholar
McCarthy, F. P., Kingdom, J. C., Kenny, L. C. & Walsh, S. K. Animal models of preeclampsia: uses and limitations. Placenta32, 413–419 (2011). ArticleCASPubMed Google Scholar
Gervasi, M. T. et al. Phenotypic and metabolic characteristics of maternal monocytes and granulocytes in preterm labor with intact membranes. Am. J. Obstet. Gynecol.185, 1124–1129 (2001). ArticleCASPubMed Google Scholar
Gervasi, M. T. et al. Maternal intravascular inflammation in preterm premature rupture of membranes. J. Matern. Fetal Neonatal Med.11, 171–175 (2002). ArticleCASPubMed Google Scholar
Sabatier, F. et al. Neutrophil activation in preeclampsia and isolated intrauterine growth restriction. Am. J. Obstet. Gynecol.183, 1558–1563 (2000). ArticleCASPubMed Google Scholar
Ogge, G. et al. Leukocytes of pregnant women with small-for-gestational age neonates have a different phenotypic and metabolic activity from those of women with preeclampsia. J. Matern. Fetal Neonatal Med.23, 476–487 (2010). ArticleCASPubMedPubMed Central Google Scholar
Roberts, J. M. et al. Preeclampsia: an endothelial cell disorder. Am. J. Obstet. Gynecol.161, 1200–1204 (1989). ArticleCASPubMed Google Scholar
Chaiworapongsa, T. et al. Soluble adhesion molecule profile in normal pregnancy and pre-eclampsia. J. Matern. Fetal Neonatal Med.12, 19–27 (2002). ArticleCASPubMed Google Scholar
Bretelle, F. et al. Maternal endothelial soluble cell adhesion molecules with isolated small for gestational age fetuses: comparison with pre-eclampsia. BJOG108, 1277–1282 (2001). CASPubMed Google Scholar
Bussolino, F., Benedetto, C., Massobrio, M. & Camussi, G. Maternal vascular prostacyclin activity in pre-eclampsia. Lancet2, 702 (1980). ArticleCASPubMed Google Scholar
Walsh, S. W. Preeclampsia: an imbalance in placental prostacyclin and thromboxane production. Am. J. Obstet. Gynecol.152, 335–340 (1985). ArticleCASPubMed Google Scholar
Freedman, J. E. et al. Deficient platelet-derived nitric oxide and enhanced hemostasis in mice lacking the NOSIII gene. Circ. Res.84, 1416–1421 (1999). ArticleCASPubMed Google Scholar
Yallampalli, C. & Garfield, R. E. Inhibition of nitric oxide synthesis in rats during pregnancy produces signs similar to those of preeclampsia. Am. J. Obstet. Gynecol.169, 1316–1320 (1993). ArticleCASPubMed Google Scholar
Cadroy, Y. et al. Evaluation of six markers of haemostatic system in normal pregnancy and pregnancy complicated by hypertension or pre-eclampsia. Br. J. Obstet. Gynaecol.100, 416–420 (1993). ArticleCASPubMed Google Scholar
Chaiworapongsa, T. et al. Evidence of in vivo generation of thrombin in patients with small-for-gestational-age fetuses and pre-eclampsia. J. Matern. Fetal Neonatal Med.11, 362–367 (2002). ArticleCASPubMed Google Scholar
Kobayashi, T., Tokunaga, N., Sugimura, M., Kanayama, N. & Terao, T. Predictive values of coagulation/fibrinolysis parameters for the termination of pregnancy complicated by severe preeclampsia. Semin. Thromb. Hemost.27, 137–141 (2001). ArticleCASPubMed Google Scholar
Sharma, S. K., Philip, J., Whitten, C. W., Padakandla, U. B. & Landers, D. F. Assessment of changes in coagulation in parturients with preeclampsia using thromboelastography. Anesthesiology90, 385–390 (1999). ArticleCASPubMed Google Scholar
Fakhouri, F., Vercel, C. & Fremeaux-Bacchi, V. Obstetric nephrology: AKI and thrombotic microangiopathies in pregnancy. Clin. J. Am. Soc. Nephrol.7, 2100–2106 (2012). ArticlePubMed Google Scholar
Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature380, 439–442 (1996). ArticleCASPubMed Google Scholar
Torry, D. S., Wang, H. S., Wang, T. H., Caudle, M. R. & Torry, R. J. Preeclampsia is associated with reduced serum levels of placenta growth factor. Am. J. Obstet. Gynecol.179, 1539–1544 (1998). ArticleCASPubMed Google Scholar
Maynard, S. E. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest.111, 649–658 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yang, J. C. et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med.349, 427–434 (2003). ArticleCASPubMedPubMed Central Google Scholar
Levine, R. J. et al. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med.350, 672–683 (2004). ArticleCASPubMed Google Scholar
Chaiworapongsa, T. et al. Evidence supporting a role for blockade of the vascular endothelial growth factor system in the pathophysiology of preeclampsia. Young Investigator Award. Am. J. Obstet. Gynecol.190, 1541–1550 (2004). ArticleCASPubMed Google Scholar
Chaiworapongsa, T. et al. Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia. J. Matern. Fetal Neonatal Med.17, 3–18 (2005). ArticleCASPubMed Google Scholar
Widmer, M. et al. Mapping the theories of preeclampsia and the role of angiogenic factors: a systematic review. Obstet. Gynecol.109, 168–180 (2007). ArticleCASPubMed Google Scholar
Romero, R. et al. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J. Matern. Fetal Neonatal Med.21, 9–23 (2008). ArticleCASPubMedPubMed Central Google Scholar
Bujold, E. et al. Evidence supporting that the excess of the sVEGFR-1 concentration in maternal plasma in preeclampsia has a uterine origin. J. Matern. Fetal Neonatal Med.18, 9–16 (2005). ArticleCASPubMed Google Scholar
Maynard, S. E. et al. Gestational angiogenic biomarker patterns in high risk preeclampsia groups. Am. J. Obstet. Gynecol.53, e1–e9 (2013). Google Scholar
Wolf, M. et al. Circulating levels of the antiangiogenic marker sFLT-1 are increased in first versus second pregnancies. Am. J. Obstet. Gynecol.193, 16–22 (2005). ArticleCASPubMed Google Scholar
Bdolah, Y. et al. Twin pregnancy and the risk of preeclampsia: bigger placenta or relative ischemia? Am. J. Obstet. Gynecol.198, 428.e1–428.e6 (2008). Article Google Scholar
Cohen, A. et al. Circulating levels of the antiangiogenic marker soluble FMS-like tyrosine kinase 1 are elevated in women with pregestational diabetes and preeclampsia: angiogenic markers in preeclampsia and preexisting diabetes. Diabetes Care30, 375–377 (2007). ArticleCASPubMed Google Scholar
Levine, R. J. et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N. Engl. J. Med.355, 992–1005 (2006). ArticleCASPubMed Google Scholar
Rajakumar, A. et al. Extra-placental expression of vascular endothelial growth factor receptor-1, (Flt-1) and soluble Flt-1 (sFlt-1), by peripheral blood mononuclear cells (PBMCs) in normotensive and preeclamptic pregnant women. Placenta26, 563–573 (2005). ArticleCASPubMed Google Scholar
Rajakumar, A. et al. Novel soluble Flt-1 isoforms in plasma and cultured placental explants from normotensive pregnant and preeclamptic women. Placenta30, 25–34 (2009). ArticleCASPubMed Google Scholar
Sela, S. et al. A novel human-specific soluble vascular endothelial growth factor receptor 1: cell-type-specific splicing and implications to vascular endothelial growth factor homeostasis and preeclampsia. Circ. Res.102, 1566–1574 (2008). ArticleCASPubMed Google Scholar
Gilbert, J. S., Babcock, S. A. & Granger, J. P. Hypertension produced by reduced uterine perfusion in pregnant rats is associated with increased soluble fms-like tyrosine kinase-1 expression. Hypertension50, 1142–1147 (2007). ArticleCASPubMed Google Scholar
Makris, A. et al. Uteroplacental ischemia results in proteinuric hypertension and elevated sFLT-1. Kidney Int.71, 977–984 (2007). ArticleCASPubMed Google Scholar
Rajakumar, A. et al. Transcriptionally active syncytial aggregates in the maternal circulation may contribute to circulating soluble fms-like tyrosine kinase 1 in preeclampsia. Hypertension59, 256–264 (2012). ArticleCASPubMed Google Scholar
Lockwood, C. J. et al. Thrombin regulates soluble fms-like tyrosine kinase-1 (sFlt-1) expression in first trimester decidua: implications for preeclampsia. Am. J. Pathol.170, 1398–1405 (2007). ArticleCASPubMedPubMed Central Google Scholar
Nagamatsu, T. et al. Cytotrophoblasts up-regulate soluble fms-like tyrosine kinase-1 expression under reduced oxygen: an implication for the placental vascular development and the pathophysiology of preeclampsia. Endocrinology145, 4838–4845 (2004). ArticleCASPubMed Google Scholar
Kendall, R. L. & Thomas, K. A. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl Acad. Sci. USA90, 10705–10709 (1993). ArticleCASPubMedPubMed Central Google Scholar
Sandrim, V. C. et al. Nitric oxide formation is inversely related to serum levels of antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endogline in preeclampsia. Hypertension52, 402–407 (2008). ArticleCASPubMed Google Scholar
Cindrova-Davies, T., Sanders, D. A., Burton, G. J. & Charnock-Jones, D. S. Soluble FLT1 sensitizes endothelial cells to inflammatory cytokines by antagonizing VEGF receptor-mediated signalling. Cardiovasc. Res.89, 671–679 (2011). ArticleCASPubMed Google Scholar
Eremina, V. et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Invest.111, 707–716 (2003). ArticleCASPubMedPubMed Central Google Scholar
Craici, I. M. et al. Podocyturia predates proteinuria and clinical features of preeclampsia: longitudinal prospective study. Hypertension61, 1289–1296 (2013). ArticleCASPubMed Google Scholar
Chen, G. et al. Effects of angiogenic factors, antagonists, and podocyte injury on development of proteinuria in preeclampsia. Reprod. Sci.20, 579–588 (2013). ArticleCASPubMedPubMed Central Google Scholar
Venkatesha, S. et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med.12, 642–649 (2006). ArticleCASPubMed Google Scholar
McAllister, K. A. et al. Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat. Genet.8, 345–351 (1994). ArticleCASPubMed Google Scholar
Li, D. Y. et al. Defective angiogenesis in mice lacking endoglin. Science284, 1534–1537 (1999). ArticleCASPubMed Google Scholar
Reimer, T. et al. Angiogenic factors and acute-phase proteins in serum samples of preeclampsia and HELLP patients: a matched-pair analysis. J. Matern. Fetal Neonatal Med.26, 263–269 (2013). ArticleCASPubMed Google Scholar
Young, B. et al. The use of angiogenic biomarkers to differentiate non-HELLP related thrombocytopenia from HELLP syndrome. J. Matern. Fetal Neonatal Med.23, 366–370 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chaiworapongsa, T. et al. The maternal plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated in SGA and the magnitude of the increase relates to Doppler abnormalities in the maternal and fetal circulation. J. Matern. Fetal Neonatal Med.21, 25–40 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chaiworapongsa, T. et al. A subset of patients destined to develop spontaneous preterm labor has an abnormal angiogenic/anti-angiogenic profile in maternal plasma: evidence in support of pathophysiologic heterogeneity of preterm labor derived from a longitudinal study. J. Matern. Fetal Neonatal Med.22, 1122–1139 (2009). ArticleCASPubMedPubMed Central Google Scholar
Romero, R. et al. An imbalance between angiogenic and anti-angiogenic factors precedes fetal death in a subset of patients: results of a longitudinal study. J. Matern. Fetal Neonatal Med.23, 1384–1399 (2010). ArticlePubMedPubMed Central Google Scholar
Chaiworapongsa, T. et al. Maternal plasma concentrations of angiogenic/antiangiogenic factors in the third trimester of pregnancy to identify the patient at risk for stillbirth at or near term and severe late preeclampsia. Am. J. Obstet. Gynecol.208, 287.e1–287.e15 (2013). ArticleCAS Google Scholar
Whitten, A. E. et al. Evidence of an imbalance of angiogenic/antiangiogenic factors in massive perivillous fibrin deposition (maternal floor infarction): a placental lesion associated with recurrent miscarriage and fetal death. Am. J. Obstet. Gynecol.208, 310.e1–310.e11 (2013). ArticleCAS Google Scholar
Signore, C. et al. Circulating angiogenic factors and placental abruption. Obstet. Gynecol.108, 338–344 (2006). ArticleCASPubMed Google Scholar
Koga, K. et al. Elevated serum soluble fms-like tyrosine kinase 1 (sFlt1) level in women with hydatidiform mole. Fertil. Steril.94, 305–308 (2010). ArticleCASPubMed Google Scholar
Bdolah, Y. et al. Circulating angiogenic proteins in trisomy 13. Am. J. Obstet. Gynecol.194, 239–245 (2006). ArticleCASPubMed Google Scholar
Kusanovic, J. P. et al. Twin-to-twin transfusion syndrome: an antiangiogenic state? Am. J. Obstet. Gynecol.198, 382.e1–382.e8 (2008). Article Google Scholar
Romero, R. The child is the father of the man. Prenat. Neonat. Med.1, 8–11 (1996). Google Scholar
Romero, R. Prenatal medicine: the child is the father of the man. 1996. J. Matern. Fetal Neonatal Med.22, 636–639 (2009). ArticlePubMed Google Scholar
Fraser, S. H. & Tudehope, D. I. Neonatal neutropenia and thrombocytopenia following maternal hypertension. J. Paediatr. Child Health32, 31–34 (1996). ArticleCASPubMed Google Scholar
Sarhanis, P. & Pugh, D. H. Resolution of pre-eclampsia following intrauterine death of one twin. Br. J. Obstet. Gynaecol.99, 159–160 (1992). ArticleCASPubMed Google Scholar
Conde-Agudelo, A., Villar, J. & Lindheimer, M. Maternal infection and risk of preeclampsia: systematic review and metaanalysis. Am. J. Obstet. Gynecol.198, 7–22 (2008). ArticlePubMed Google Scholar
Leveno, K. J. & Cunningham, F. G. in Chesley's Hypertensive Disorders in Pregnancy (eds Lindheimer, M. D., Roberts, J. M. & Cunningham, G. C.), 389–414 (Elsevier, 2009). Book Google Scholar
Saftlas, A. F., Olson, D. R., Franks, A. L., Atrash, H. K. & Pokras, R. Epidemiology of preeclampsia and eclampsia in the United States, 1979–1986. Am. J. Obstet. Gynecol.163, 460–465 (1990). ArticleCASPubMed Google Scholar
Zhang, J., Zeisler, J., Hatch, M. C. & Berkowitz, G. Epidemiology of pregnancy-induced hypertension. Epidemiol. Rev.19, 218–232 (1997). ArticleCASPubMed Google Scholar
Eskenazi, B., Fenster, L. & Sidney, S. A multivariate analysis of risk factors for preeclampsia. JAMA266, 237–241 (1991). ArticleCASPubMed Google Scholar
Bodnar, L. M., Ness, R. B., Markovic, N. & Roberts, J. M. The risk of preeclampsia rises with increasing prepregnancy body mass index. Ann. Epidemiol.15, 475–482 (2005). ArticlePubMed Google Scholar
Branch, D. W., Silver, R. M., Blackwell, J. L., Reading, J. C. & Scott, J. R. Outcome of treated pregnancies in women with antiphospholipid syndrome: an update of the Utah experience. Obstet. Gynecol.80, 614–620 (1992). CASPubMed Google Scholar
Lima, F. et al. A study of sixty pregnancies in patients with the antiphospholipid syndrome. Clin. Exp. Rheumatol.14, 131–136 (1996). CASPubMed Google Scholar
Schieve, L. A., Handler, A., Hershow, R., Persky, V. & Davis, F. Urinary tract infection during pregnancy: its association with maternal morbidity and perinatal outcome. Am. J. Public Health84, 405–410 (1994). ArticleCASPubMedPubMed Central Google Scholar
Lisonkova, S. & Joseph, K. S. Incidence of preeclampsia: risk factors and outcomes associated with early- versus late-onset disease. Am. J. Obstet. Gynecol.209, 544.e541–544.e512 (2013). Article Google Scholar