An unusual buried polar cluster in a family of fungal lipases (original) (raw)
References
Sarda, L. & Desnuelle, P. Action de la lipase pancreatique sur les esters en emulsion. Biochim. biophys. Acta.30, 513–521 (1958). ArticleCAS Google Scholar
Brady, L. et al. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature343, 767–770 (1990). ArticleCAS Google Scholar
Derewenda, Z.S., Derewenda, U. & Dodson, G.G. The crystal and molecular structure of the Rhizomucor miehei triacylglycerol lipase at 1.9Å resolution. J. Molec. Biol.227, 818–839 (1992). ArticleCAS Google Scholar
Schrag, J.D., Li, Y., Wu, S. & Cygler, M. Ser-His-Glu forms the catalytic site of a lipase from Geotrichum candidum. Nature351, 761–764 (1991). ArticleCAS Google Scholar
Schrag, J.D. & Cygler, M. 1.8Å refined structure of the lipase from Geotrichum candidum. J. Molec. Biol.230, 575–591 (1993). ArticleCAS Google Scholar
Grochulski, P. et al. Insights into interfacial activation from an open structure of Candida rugosa lipase. J. biol. Chem.268, 12843–12847 (1993). CASPubMed Google Scholar
Winkler, F.K., D'Arcy, A. & Hunziker, W. Structure of human pancreatic lipase. Nature343, 771–774 (1990). ArticleCAS Google Scholar
Noble, M.E.M., Cleasby, A., Johnson, L.N., Egmond, M.R. & Frenken, L.G.J. The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. FEBS Lett.331, 123–128 (1993). ArticleCAS Google Scholar
Derewenda, Z.S. & Derewenda, U. Relationships among serine hydrolases: evidence of a common structural motif in triacylglycerol lipases and esterases. Biochem. Cell Biol.69, 842–851 (1991). ArticleCAS Google Scholar
Desnuelle, P., Sarda, L. & Aihaud, G. Inhibition de la lipase pancreatique par le diethyl-p-nitrophenyl phosphate en emulsion. Biochim. biophys. Acta37, 570–571 (1960). ArticleCAS Google Scholar
Brzozowski, A.M. et al. A model for interfacial activation in lipases from the structure of a lipase-inhibitor complex. Nature351, 491–494 (1991). ArticleCAS Google Scholar
Derewenda, U., Brzozowski, A.M., Lawson, D.M. & Derewenda, Z.S. Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Biochemistry31, 1532–1541 (1992). ArticleCAS Google Scholar
van Tilbeurgh, H. et al. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature362, 814–820 (1993). ArticleCAS Google Scholar
Boel, E. et al. in Lipases, Structure, Mechanism and Genetic Engineering Vol. 16 (eds Alberghina, L., Schmid, R.D. & Verger, R.) 207–219 (GBF Monographs 1991). Google Scholar
Yamaguchi, S., Mase, T. & Tekeuchi, K. Cloning and structure of the mono- and diglyceride lipase - encoding gene. Gene103, 61–67 (1991). ArticleCAS Google Scholar
Haas, M.J., Allen, J. & Berka, T.R. Cloning, expression and characterization of cDNA encoding a lipase from Rhizopus delemar. Gene109, 107–113 (1991). ArticleCAS Google Scholar
Derewenda, U. et al. Confromational lability of lipases observed in the absence of an oil-water interface. J. Lipid. Res. in press (1994). Google Scholar
Ollis, D.I. et al. The α/β hydrolase fold. Protein Engineering5, 197–211 (1992). ArticleCAS Google Scholar
Branden, C.-I. The TIM barrel -the most frequently occuring folding motif in proteins. Curr. Opin. struct. Biol.1, 378–383 (1992). Google Scholar
Rashe, A.A. & Honig, B.H. On the environment of ionizable groups in globular proteins. J. molec. Biol.173, 515–521 (1984). Article Google Scholar
Barlow, D.J. & Thornton, J.M. Ion pairs in proteins. J. molec. Biol.168, 867–885 (1983). ArticleCAS Google Scholar
Åberg, A., Nordlund, P. & Eklund, H. Unusual clustering of carboxyl side chains in the core of the iron-free ribonucleotide reductase. Nature361, 276–278 (1993). Article Google Scholar
Brockman, H.L., Law, J.H. & Keady, F.J. Catalysis by adsorbed enzymes. The hydrolysis of tripropionin by pancreatic lipase adsorbed to siliconized glass beads. J. biol. Chem.248, 4965–4970 (1973). CASPubMed Google Scholar
Brockerhoff, H. Substrate specificity of pancreatic lipase. Biochim. biophys. Acta159, 296–303 (1968). ArticleCAS Google Scholar
Verger, R. in Lipases (eds Borgstrom, B. & Brockman, H.L.) 83–150 (Elsevier Science Publishers B.V. Amsterdam, 1984). Google Scholar
Muderhwa, J.M. & Brockman, J.H. Lateral lipid distribution is a major regulator of lipase activity. Implications for lipid mediated signal transduction. J. biol. Chem.267, 24184–24192 (1992). CASPubMed Google Scholar
Wilcox, R.W. et al. Regulation of rat hepatic lipase by the composition of monomolecular films of lipid. Biochemistry32, 5752–5758 (1993). ArticleCAS Google Scholar
Honig, B.H. & Hubbell, W.L. Stability of “salt bridges” in membrane proteins. Proc. natn. Acad. Sci. U.S.A.81, 5412–5416 (1984). ArticleCAS Google Scholar
Swenson, L. et al. Crystallization and preliminary crystallographic studies of the precursor and mature forms of a neutral lipase from the fungus Rhizopus delemar. Proteins Struct. Funct. Genet. (in the press).
Howard, A.J. et al. Use of an imaging proportional counter in macromolecular crystallography. J. appl. Crystallogr.20, 383–387 (1987). ArticleCAS Google Scholar
Brunger, A.T. X-PLOR Manual, Yale University, New Haven, CT, U.S.A. (1988). Google Scholar
Jones, A. A graphics model building and refinement system for macromolecules. J. Appl. crystallogr.11, 268–272 (1978). ArticleCAS Google Scholar
Lawson, D.M. et al. in: Lipases. Their Structure, Biochemistry and Applications. (ed Paul Wooley, Steffen B. Petersen) in press (Cambridge University Press, Cambridge, UK. 1993). Google Scholar
Hendrickson, W.A. Stereochemically restrained refinement of macromolecular structures. Methods Enzymol.115, 252–270 (1985). ArticleCAS Google Scholar
Navaza, J. AMoRe: a new package for molecular replacement. In: “Proceedings of the CCP4 study weekend” (eds. E.J. Dodson, S. Gower, W. Wolf) 87–91 (SERC, Daresbury, UK. 1992). Google Scholar
Carson, M. Ribbon models for macromolecules. J. Mol. Graphics, 5, 103–106 (1987). ArticleCAS Google Scholar
Jones, T.A., Zou, J.-Y., Cowan, S.W., Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr.A47, 110–119 (1991). ArticleCAS Google Scholar