The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators (original) (raw)

References

  1. Jousset, C. et al. A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFR β oncoprotein. EMBO J. 16, 69–82 (1997).
    Article CAS Google Scholar
  2. Kyba, M. & Brock, H.W. The SAM domain of polyhomeotic, RAE28, and scm mediates specific interactions through conserved residues. Dev. Genet. 22, 74–84 (1998).
    Article CAS Google Scholar
  3. Barr, M.M., Tu, H., Van Aelst, L. & Wigler, M. Identification of Ste4 as a potential regulator of Byr2 in the sexual response pathway of Schizosaccharomyces pombe. Mol. Cell. Biol. 16, 5597–5603 (1996).
    Article CAS Google Scholar
  4. Wu, C., Leberer, E., Thomas, D.Y. & Whiteway, M. Functional characterization of the interaction of Ste50p with Ste11p MAPKKK in Saccharomyces cerevisiae. Mol. Biol. Cell 10, 2425–2440 (1999).
    Article CAS Google Scholar
  5. Golub, T.R., Barker, G.F., Lovett, M. & Gilliland, D.G. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77, 307–316 (1994).
    Article CAS Google Scholar
  6. Golub, T.R. et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 92, 4917–4921 (1995).
    Article CAS Google Scholar
  7. Golub, T.R., Barker, G.F., Stegmaier, K. & Gilliland, D.G. Involvement of the TEL gene in hematologic malignancy by diverse molecular genetic mechanisms. Curr. Top. Microbiol. Immunol. 211, 279–288 (1996).
    CAS PubMed Google Scholar
  8. Lacronique, V. et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278, 1309–1312 (1997).
    Article CAS Google Scholar
  9. Slupsky, C.M. et al. Structure of the Ets-1 pointed domain and mitogen-activated protein kinase phosphorylation site. Proc. Natl. Acad. Sci. USA 95, 12129–12134 (1998).
    Article CAS Google Scholar
  10. Chi, S.W., Ayed, A. & Arrowsmith, C.H. Solution structure of a conserved C-terminal domain of p73 with structural homology to the SAM domain. EMBO J. 18, 4438–4445 (1999).
    Article CAS Google Scholar
  11. Thanos, C.D. et al. Monomeric structure of the human EphB2 sterile α motif domain. J. Biol. Chem. 274, 37301–37306 (1999).
    Article CAS Google Scholar
  12. Wang, W.K. et al. Structure of the C-terminal sterile α-motif (SAM) domain of human p73 α. Acta. Crystallogr. D. 57, 545–551 (2001).
    Article CAS Google Scholar
  13. Stapleton, D., Balan, I., Pawson, T. & Sicheri, F. The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat. Struct. Biol. 6, 44–49 (1999).
    Article CAS Google Scholar
  14. Thanos, C.D., Goodwill, K.E. & Bowie, J.U. Oligomeric structure of the human EphB2 receptor SAM domain. Science 283, 833–836 (1999).
    Article CAS Google Scholar
  15. Smalla, M. et al. Solution structure of the receptor tyrosine kinase EphB2 SAM domain and identification of two distinct homotypic interaction sites. Protein Sci. 8, 1954–1961 (1999).
    Article CAS Google Scholar
  16. Kim, C.A. et al. Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. Embo J. 20, 4173–4182 (2001).
    Article CAS Google Scholar
  17. Kim, C.A., Gingery, M., Pilpa, R.M. & Bowie, J.U. The SAM domain of polyhomeotic forms a helical polymer. Nat. Struct. Biol. 9, 453–457 (2002).
    CAS PubMed Google Scholar
  18. Smibert, C.A., Lie, Y.S., Shillinglaw, W., Henzel, W.J. & Macdonald, P.M. Smaug, a novel and conserved protein, contributes to repression of nanos mRNA translation in vitro. RNA 5, 1535–1547 (1999).
    Article CAS Google Scholar
  19. Dahanukar, A., Walker, J.A. & Wharton, R.P. Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Mol. Cell 4, 209–218 (1999).
    Article CAS Google Scholar
  20. Wang, C. & Lehmann, R. Nanos is the localized posterior determinant in Drosophila. Cell 66, 637–647 (1991).
    Article CAS Google Scholar
  21. Gavis, E.R. & Lehmann, R. Localization of nanos RNA controls embryonic polarity. Cell 71, 301–313 (1992).
    Article CAS Google Scholar
  22. Wang, C., Dickinson, L.K. & Lehmann, R. Genetics of nanos localization in Drosophila. Dev. Dyn. 199, 103–115 (1994).
    Article CAS Google Scholar
  23. Bergsten, S.E. & Gavis, E.R. Role for mRNA localization in translational activation but not spatial restriction of nanos RNA. Development 126, 659–669 (1999).
    CAS Google Scholar
  24. Gavis, E.R. & Lehmann, R. Translational regulation of nanos by RNA localization. Nature 369, 315–318 (1994).
    Article CAS Google Scholar
  25. Smibert, C.A., Wilson, J.E., Kerr, K. & Macdonald, P.M. smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo. Genes Dev. 10, 2600–2609 (1996).
    Article CAS Google Scholar
  26. LeTilly, V. & Royer, C.A. Fluorescence anisotropy assays implicate protein-protein interactions in regulating trp repressor DNA binding. Biochemistry 32, 7753–7758 (1993).
    Article CAS Google Scholar
  27. Dilcher, M., Kohler, B. & von Mollard, G.F. Genetic interactions with the yeast Q-SNARE VTI1 reveal novel functions for the R-SNARE YKT6. J. Biol. Chem. 276, 34537–34544 (2001).
    Article CAS Google Scholar
  28. Crucs, S., Chatterjee, S. & Gavis, E.R. Overlapping but distinct RNA elements control repression and activation of nanos translation. Mol. Cell 5, 457–467 (2000).
    Article CAS Google Scholar
  29. McCarthy, J.E. Posttranscriptional control of gene expression in yeast. Microbiol. Mol. Biol. Rev. 62, 1492–1553 (1998).
    CAS PubMed PubMed Central Google Scholar
  30. Tucker, M. et al. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377–386 (2001).
    Article CAS Google Scholar
  31. Tucker, M., Staples, R.R., Valencia-Sanchez, M.A., Muhlrad, D. & Parker, R. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 21, 1427–1436 (2002).
    Article CAS Google Scholar
  32. Brown, C.E., Tarun, S.Z. Jr., Boeck, R. & Sachs, A.B. PAN3 encodes a subunit of the Pab1p-dependent poly(A) nuclease in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 5744–5753 (1996).
    Article CAS Google Scholar
  33. Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin α. Cell 94, 193–204 (1998).
    Article CAS Google Scholar
  34. Huber, A.H. & Weis, W.I. The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. Cell 105, 391–402 (2001).
    Article CAS Google Scholar
  35. Edwards, T.A., Pyle, S.E., Wharton, R.P. & Aggarwal, A.K. Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell 105, 281–289 (2001).
    Article CAS Google Scholar
  36. Wang, X., McLachlan, J., Zamore, P.D. & Hall, T.M. Modular recognition of RNA by a human pumilio-homology domain. Cell 110, 501–12 (2002).
    Article CAS Google Scholar
  37. Jacobson, A. & Peltz, S.W. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu. Rev. Biochem. 65, 693–739 (1996).
    Article CAS Google Scholar
  38. Gavis, E.R., Lunsford, L., Bergsten, S.E. & Lehmann, R. A conserved 90 nucleotide element mediates translational repression of nanos RNA. Development 122, 2791–2800 (1996).
    CAS Google Scholar
  39. Suzuki, H. et al. Homodimer of two F-box proteins betaTrCP1 or betaTrCP2 binds to IκBα for signal-dependent ubiquitination. J. Biol. Chem. 275, 2877–2884 (2000).
    Article CAS Google Scholar
  40. Kominami, K., Ochotorena, I. & Toda, T. Two F-box/WD-repeat proteins Pop1 and Pop2 form hetero- and homo-complexes together with cullin-1 in the fission yeast SCF (Skp1-Cullin- 1-F-box) ubiquitin ligase. Genes Cells 3, 721–735 (1998).
    Article CAS Google Scholar
  41. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).
    Article CAS Google Scholar
  42. Page, R.D.M. TREEVIEW: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357 (1996).
    CAS PubMed Google Scholar
  43. Ponting, C.P., Schultz, J., Milpetz, F. & Bork, P. SMART: identification and annotation of domains from signalling and extracellular protein sequences. Nucleic Acids Res. 27, 229–232 (1999).
    Article CAS Google Scholar
  44. Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).
    Article CAS Google Scholar
  45. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997).
    Article CAS Google Scholar
  46. Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).
    Article CAS Google Scholar
  47. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).
    Article CAS Google Scholar
  48. Tyers, M. et al. Characterization of G1 and mitotic cyclins of budding yeast. Cold Spring Harb. Symp. Quant. Biol. 56, 21–32 (1991).
    Article CAS Google Scholar
  49. Bonnerot, C., Boeck, R. & Lapeyre, B. The two proteins Pat1p (Mrt1p) and Spb8p interact in vivo, are required for mRNA decay, and are functionally linked to Pab1p. Mol. Cell. Biol. 20, 5939–5946 (2000).
    Article CAS Google Scholar

Download references