The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators (original) (raw)
References
Jousset, C. et al. A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFR β oncoprotein. EMBO J.16, 69–82 (1997). ArticleCAS Google Scholar
Kyba, M. & Brock, H.W. The SAM domain of polyhomeotic, RAE28, and scm mediates specific interactions through conserved residues. Dev. Genet.22, 74–84 (1998). ArticleCAS Google Scholar
Barr, M.M., Tu, H., Van Aelst, L. & Wigler, M. Identification of Ste4 as a potential regulator of Byr2 in the sexual response pathway of Schizosaccharomyces pombe. Mol. Cell. Biol.16, 5597–5603 (1996). ArticleCAS Google Scholar
Wu, C., Leberer, E., Thomas, D.Y. & Whiteway, M. Functional characterization of the interaction of Ste50p with Ste11p MAPKKK in Saccharomyces cerevisiae. Mol. Biol. Cell10, 2425–2440 (1999). ArticleCAS Google Scholar
Golub, T.R., Barker, G.F., Lovett, M. & Gilliland, D.G. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell77, 307–316 (1994). ArticleCAS Google Scholar
Golub, T.R. et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA92, 4917–4921 (1995). ArticleCAS Google Scholar
Golub, T.R., Barker, G.F., Stegmaier, K. & Gilliland, D.G. Involvement of the TEL gene in hematologic malignancy by diverse molecular genetic mechanisms. Curr. Top. Microbiol. Immunol.211, 279–288 (1996). CASPubMed Google Scholar
Lacronique, V. et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science278, 1309–1312 (1997). ArticleCAS Google Scholar
Slupsky, C.M. et al. Structure of the Ets-1 pointed domain and mitogen-activated protein kinase phosphorylation site. Proc. Natl. Acad. Sci. USA95, 12129–12134 (1998). ArticleCAS Google Scholar
Chi, S.W., Ayed, A. & Arrowsmith, C.H. Solution structure of a conserved C-terminal domain of p73 with structural homology to the SAM domain. EMBO J.18, 4438–4445 (1999). ArticleCAS Google Scholar
Thanos, C.D. et al. Monomeric structure of the human EphB2 sterile α motif domain. J. Biol. Chem.274, 37301–37306 (1999). ArticleCAS Google Scholar
Wang, W.K. et al. Structure of the C-terminal sterile α-motif (SAM) domain of human p73 α. Acta. Crystallogr. D.57, 545–551 (2001). ArticleCAS Google Scholar
Stapleton, D., Balan, I., Pawson, T. & Sicheri, F. The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat. Struct. Biol.6, 44–49 (1999). ArticleCAS Google Scholar
Thanos, C.D., Goodwill, K.E. & Bowie, J.U. Oligomeric structure of the human EphB2 receptor SAM domain. Science283, 833–836 (1999). ArticleCAS Google Scholar
Smalla, M. et al. Solution structure of the receptor tyrosine kinase EphB2 SAM domain and identification of two distinct homotypic interaction sites. Protein Sci.8, 1954–1961 (1999). ArticleCAS Google Scholar
Kim, C.A. et al. Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. Embo J.20, 4173–4182 (2001). ArticleCAS Google Scholar
Kim, C.A., Gingery, M., Pilpa, R.M. & Bowie, J.U. The SAM domain of polyhomeotic forms a helical polymer. Nat. Struct. Biol.9, 453–457 (2002). CASPubMed Google Scholar
Smibert, C.A., Lie, Y.S., Shillinglaw, W., Henzel, W.J. & Macdonald, P.M. Smaug, a novel and conserved protein, contributes to repression of nanos mRNA translation in vitro. RNA5, 1535–1547 (1999). ArticleCAS Google Scholar
Dahanukar, A., Walker, J.A. & Wharton, R.P. Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Mol. Cell4, 209–218 (1999). ArticleCAS Google Scholar
Wang, C. & Lehmann, R. Nanos is the localized posterior determinant in Drosophila. Cell66, 637–647 (1991). ArticleCAS Google Scholar
Gavis, E.R. & Lehmann, R. Localization of nanos RNA controls embryonic polarity. Cell71, 301–313 (1992). ArticleCAS Google Scholar
Wang, C., Dickinson, L.K. & Lehmann, R. Genetics of nanos localization in Drosophila. Dev. Dyn.199, 103–115 (1994). ArticleCAS Google Scholar
Bergsten, S.E. & Gavis, E.R. Role for mRNA localization in translational activation but not spatial restriction of nanos RNA. Development126, 659–669 (1999). CAS Google Scholar
Gavis, E.R. & Lehmann, R. Translational regulation of nanos by RNA localization. Nature369, 315–318 (1994). ArticleCAS Google Scholar
Smibert, C.A., Wilson, J.E., Kerr, K. & Macdonald, P.M. smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo. Genes Dev.10, 2600–2609 (1996). ArticleCAS Google Scholar
LeTilly, V. & Royer, C.A. Fluorescence anisotropy assays implicate protein-protein interactions in regulating trp repressor DNA binding. Biochemistry32, 7753–7758 (1993). ArticleCAS Google Scholar
Dilcher, M., Kohler, B. & von Mollard, G.F. Genetic interactions with the yeast Q-SNARE VTI1 reveal novel functions for the R-SNARE YKT6. J. Biol. Chem.276, 34537–34544 (2001). ArticleCAS Google Scholar
Crucs, S., Chatterjee, S. & Gavis, E.R. Overlapping but distinct RNA elements control repression and activation of nanos translation. Mol. Cell5, 457–467 (2000). ArticleCAS Google Scholar
McCarthy, J.E. Posttranscriptional control of gene expression in yeast. Microbiol. Mol. Biol. Rev.62, 1492–1553 (1998). CASPubMedPubMed Central Google Scholar
Tucker, M. et al. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell104, 377–386 (2001). ArticleCAS Google Scholar
Tucker, M., Staples, R.R., Valencia-Sanchez, M.A., Muhlrad, D. & Parker, R. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J.21, 1427–1436 (2002). ArticleCAS Google Scholar
Brown, C.E., Tarun, S.Z. Jr., Boeck, R. & Sachs, A.B. PAN3 encodes a subunit of the Pab1p-dependent poly(A) nuclease in Saccharomyces cerevisiae. Mol. Cell. Biol.16, 5744–5753 (1996). ArticleCAS Google Scholar
Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin α. Cell94, 193–204 (1998). ArticleCAS Google Scholar
Huber, A.H. & Weis, W.I. The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. Cell105, 391–402 (2001). ArticleCAS Google Scholar
Edwards, T.A., Pyle, S.E., Wharton, R.P. & Aggarwal, A.K. Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell105, 281–289 (2001). ArticleCAS Google Scholar
Wang, X., McLachlan, J., Zamore, P.D. & Hall, T.M. Modular recognition of RNA by a human pumilio-homology domain. Cell110, 501–12 (2002). ArticleCAS Google Scholar
Jacobson, A. & Peltz, S.W. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu. Rev. Biochem.65, 693–739 (1996). ArticleCAS Google Scholar
Gavis, E.R., Lunsford, L., Bergsten, S.E. & Lehmann, R. A conserved 90 nucleotide element mediates translational repression of nanos RNA. Development122, 2791–2800 (1996). CAS Google Scholar
Suzuki, H. et al. Homodimer of two F-box proteins betaTrCP1 or betaTrCP2 binds to IκBα for signal-dependent ubiquitination. J. Biol. Chem.275, 2877–2884 (2000). ArticleCAS Google Scholar
Kominami, K., Ochotorena, I. & Toda, T. Two F-box/WD-repeat proteins Pop1 and Pop2 form hetero- and homo-complexes together with cullin-1 in the fission yeast SCF (Skp1-Cullin- 1-F-box) ubiquitin ligase. Genes Cells3, 721–735 (1998). ArticleCAS Google Scholar
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res.25, 4876–4882 (1997). ArticleCAS Google Scholar
Page, R.D.M. TREEVIEW: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci.12, 357 (1996). CASPubMed Google Scholar
Ponting, C.P., Schultz, J., Milpetz, F. & Bork, P. SMART: identification and annotation of domains from signalling and extracellular protein sequences. Nucleic Acids Res.27, 229–232 (1999). ArticleCAS Google Scholar
Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis18, 2714–2723 (1997). ArticleCAS Google Scholar
Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins11, 281–296 (1991). ArticleCAS Google Scholar
Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature415, 180–183 (2002). ArticleCAS Google Scholar
Tyers, M. et al. Characterization of G1 and mitotic cyclins of budding yeast. Cold Spring Harb. Symp. Quant. Biol.56, 21–32 (1991). ArticleCAS Google Scholar
Bonnerot, C., Boeck, R. & Lapeyre, B. The two proteins Pat1p (Mrt1p) and Spb8p interact in vivo, are required for mRNA decay, and are functionally linked to Pab1p. Mol. Cell. Biol.20, 5939–5946 (2000). ArticleCAS Google Scholar