Structure and autoregulation of the yeast Hst2 homolog of Sir2 (original) (raw)

References

  1. de Ruijter, A.J., van Gennip, A.H., Caron, H.N., Kemp, S. & van Kuilenburg, A.B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737–749 (2003).
    Article CAS Google Scholar
  2. Timmermann, S. Histone acetylation and disease. Cell. Mol. Life Sci. 58, 728–736 (2001).
    Article CAS Google Scholar
  3. Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 14, 1021–1026 (2000).
    CAS PubMed Google Scholar
  4. Marmorstein, R. Structure of histone deacetylases: insights into substrate recognition and catalysis. Structure 9, 1127–1133 (2001).
    Article CAS Google Scholar
  5. Frye, R.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273, 793–798 (2000).
    Article CAS Google Scholar
  6. Finnin, M.S. et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401, 188–193 (1999).
    Article CAS Google Scholar
  7. Landry, J. et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl. Acad. Sci. USA 97, 5807–5811 (2000).
    Article CAS Google Scholar
  8. Frye, R.A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 260, 273–279 (1999).
    Article CAS Google Scholar
  9. Imai, S., Armstrong, C.M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).
    Article CAS Google Scholar
  10. Denu, J.M. Linking chromatin function with metabolic networks: Sir2 family of NAD+-dependent deacetylases. Trends Biochem. Sci. 28, 41–48 (2003).
    Article CAS Google Scholar
  11. Smith, J.S. et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl. Acad. Sci. USA 97, 6658–6663 (2000).
    Article CAS Google Scholar
  12. Min, J., Landry, J., Sternglanz, R. & Xu, R.M. Crystal structure of a SIR2 homolog–NAD complex. Cell 105, 269–279 (2001).
    Article CAS Google Scholar
  13. Avalos, J.L. et al. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol. Cell 10, 523–535 (2002).
    Article CAS Google Scholar
  14. Starai, V.J., Celic, I., Cole, R.N., Boeke, J.D. & Escalante-Semerena, J.C. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298, 2390–2392 (2002).
    Article CAS Google Scholar
  15. Bell, S.D., Botting, C.H., Wardleworth, B.N., Jackson, S.P. & White, M.F. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science 296, 148–151 (2002).
    Article CAS Google Scholar
  16. Vaziri, H. et al. hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159 (2001).
    Article CAS Google Scholar
  17. North, B.J., Marshall, B.L., Borra, M.T., Denu, J.M. & Verdin, E. The human Sir2 ortholog, SIRT2, is a NAD+-dependent tubulin deacetylase. Mol. Cell 11, 437–444 (2003).
    Article CAS Google Scholar
  18. Cockell, M.M., Perrod, S. & Gasser, S.M. Analysis of Sir2p domains required for rDNA and telomeric silencing in Saccharomyces cerevisiae. Genetics 154, 1069–1083 (2000).
    CAS PubMed PubMed Central Google Scholar
  19. Cuperus, G., Shafaatian, R. & Shore, D. Locus specificity determinants in the multifunctional yeast silencing protein Sir2. EMBO J. 19, 2641–2651 (2000).
    Article CAS Google Scholar
  20. Finnin, M.S., Donigian, J.R. & Pavletich, N.P. Structure of the histone deacetylase SIRT2. Nat. Struct. Biol. 8, 621–625 (2001).
    Article CAS Google Scholar
  21. Bellamacina, C.R. The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins. FASEB J. 10, 1257–1269 (1996).
    Article CAS Google Scholar
  22. Polevoda, B. & Sherman, F. Nα-terminal acetylation of eukaryotic proteins. J. Biol. Chem. 275, 36479–36482 (2000).
    Article CAS Google Scholar
  23. Hubbard, S.R. Autoinhibitory mechanisms in receptor tyrosine kinases. Frontiers Biosci. 7, 330–340 (2002).
    Article Google Scholar
  24. Rojas, J.R. et al. Structure of the Tetrahymena GCN5 bound to coenzyme-A and a histone H3 peptide. Nature 401, 93–98 (1999).
    Article CAS Google Scholar
  25. Yan, Y., Barlev, N.A., Haley, R.H., Berger, S.L. & Marmorstein, R. Crystal structure of yeast Esa1 suggests a unified mechanism of catalysis and substrate binding by histone acetyltransferases. Mol. Cell 6, 1195–1205 (2000).
    Article CAS Google Scholar
  26. Dutnall, R.N., Tafrov, S.T., Sternglanz, R. & Ramakrishnan, V. Structure of the histone acetyltransferase Hat1: A paradigm for the GCN5-related _N_-acetyltransferase superfamily. Cell 94, 427–438 (1998).
    Article CAS Google Scholar
  27. Marmorstein, R. Structure of SET domain proteins—a new twist on histone methylation. Trends Biochem. Sci. 28, 59–62 (2003).
    Article CAS Google Scholar
  28. Xiao, B. et al. Structure and catalytic mechanism of human histone methyltransferase SET7/9. Nature 421, 652–656 (2003).
    Article CAS Google Scholar
  29. Min, J., Zhang, X., Cheng, X., Grewal, S.I.S. & Xu, R.-M. Structure of the SET domain histone lysine methyltransferase Clr4. Nat. Struct. Biol. 9, 828–832 (2002).
    CAS PubMed Google Scholar
  30. Trievel, R.C., Beach, B.M., Dirk, L.M.A., Houtz, R.L. & Hurley, J.H. Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell 111, 91–103 (2002).
    Article CAS Google Scholar
  31. Jacobs, S.A. et al. The active site of the SET domain is constructed on a knot. Nat. Struct. Biol. 9, 833–838 (2002).
    CAS PubMed Google Scholar
  32. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).
    Article CAS Google Scholar
  33. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).
    Article CAS Google Scholar
  34. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002).
    Article Google Scholar
  35. de La Fortelle, E. & Bricogne, G. SHARP: maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).
    Article CAS Google Scholar
  36. Jones, T.A. A graphics model building and refinement system for macromolecules. J. Appl. Crystallogr. 11, 268–272 (1978).
    Article CAS Google Scholar
  37. Johnson, M.L., Correia, J.J., Yphantis, D.A. & Halvorson, H.R. Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys. J. 36, 575–588 (1981).
    Article CAS Google Scholar
  38. Bitterman, K.J., Anderson, R.M., Cohen, H.Y., Latorre-Esteves, M. & Sinclair, D.A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 277, 45099–45107 (2002).
    Article CAS Google Scholar

Download references