Structure and autoregulation of the yeast Hst2 homolog of Sir2 (original) (raw)
References
de Ruijter, A.J., van Gennip, A.H., Caron, H.N., Kemp, S. & van Kuilenburg, A.B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J.370, 737–749 (2003). ArticleCAS Google Scholar
Timmermann, S. Histone acetylation and disease. Cell. Mol. Life Sci.58, 728–736 (2001). ArticleCAS Google Scholar
Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev.14, 1021–1026 (2000). CASPubMed Google Scholar
Marmorstein, R. Structure of histone deacetylases: insights into substrate recognition and catalysis. Structure9, 1127–1133 (2001). ArticleCAS Google Scholar
Frye, R.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun.273, 793–798 (2000). ArticleCAS Google Scholar
Finnin, M.S. et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature401, 188–193 (1999). ArticleCAS Google Scholar
Landry, J. et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl. Acad. Sci. USA97, 5807–5811 (2000). ArticleCAS Google Scholar
Frye, R.A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun.260, 273–279 (1999). ArticleCAS Google Scholar
Imai, S., Armstrong, C.M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature403, 795–800 (2000). ArticleCAS Google Scholar
Denu, J.M. Linking chromatin function with metabolic networks: Sir2 family of NAD+-dependent deacetylases. Trends Biochem. Sci.28, 41–48 (2003). ArticleCAS Google Scholar
Smith, J.S. et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl. Acad. Sci. USA97, 6658–6663 (2000). ArticleCAS Google Scholar
Min, J., Landry, J., Sternglanz, R. & Xu, R.M. Crystal structure of a SIR2 homolog–NAD complex. Cell105, 269–279 (2001). ArticleCAS Google Scholar
Avalos, J.L. et al. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol. Cell10, 523–535 (2002). ArticleCAS Google Scholar
Starai, V.J., Celic, I., Cole, R.N., Boeke, J.D. & Escalante-Semerena, J.C. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science298, 2390–2392 (2002). ArticleCAS Google Scholar
Bell, S.D., Botting, C.H., Wardleworth, B.N., Jackson, S.P. & White, M.F. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science296, 148–151 (2002). ArticleCAS Google Scholar
Vaziri, H. et al. hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell107, 149–159 (2001). ArticleCAS Google Scholar
North, B.J., Marshall, B.L., Borra, M.T., Denu, J.M. & Verdin, E. The human Sir2 ortholog, SIRT2, is a NAD+-dependent tubulin deacetylase. Mol. Cell11, 437–444 (2003). ArticleCAS Google Scholar
Cockell, M.M., Perrod, S. & Gasser, S.M. Analysis of Sir2p domains required for rDNA and telomeric silencing in Saccharomyces cerevisiae. Genetics154, 1069–1083 (2000). CASPubMedPubMed Central Google Scholar
Cuperus, G., Shafaatian, R. & Shore, D. Locus specificity determinants in the multifunctional yeast silencing protein Sir2. EMBO J.19, 2641–2651 (2000). ArticleCAS Google Scholar
Finnin, M.S., Donigian, J.R. & Pavletich, N.P. Structure of the histone deacetylase SIRT2. Nat. Struct. Biol.8, 621–625 (2001). ArticleCAS Google Scholar
Bellamacina, C.R. The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins. FASEB J.10, 1257–1269 (1996). ArticleCAS Google Scholar
Polevoda, B. & Sherman, F. Nα-terminal acetylation of eukaryotic proteins. J. Biol. Chem.275, 36479–36482 (2000). ArticleCAS Google Scholar
Hubbard, S.R. Autoinhibitory mechanisms in receptor tyrosine kinases. Frontiers Biosci.7, 330–340 (2002). Article Google Scholar
Rojas, J.R. et al. Structure of the Tetrahymena GCN5 bound to coenzyme-A and a histone H3 peptide. Nature401, 93–98 (1999). ArticleCAS Google Scholar
Yan, Y., Barlev, N.A., Haley, R.H., Berger, S.L. & Marmorstein, R. Crystal structure of yeast Esa1 suggests a unified mechanism of catalysis and substrate binding by histone acetyltransferases. Mol. Cell6, 1195–1205 (2000). ArticleCAS Google Scholar
Dutnall, R.N., Tafrov, S.T., Sternglanz, R. & Ramakrishnan, V. Structure of the histone acetyltransferase Hat1: A paradigm for the GCN5-related _N_-acetyltransferase superfamily. Cell94, 427–438 (1998). ArticleCAS Google Scholar
Marmorstein, R. Structure of SET domain proteins—a new twist on histone methylation. Trends Biochem. Sci.28, 59–62 (2003). ArticleCAS Google Scholar
Xiao, B. et al. Structure and catalytic mechanism of human histone methyltransferase SET7/9. Nature421, 652–656 (2003). ArticleCAS Google Scholar
Min, J., Zhang, X., Cheng, X., Grewal, S.I.S. & Xu, R.-M. Structure of the SET domain histone lysine methyltransferase Clr4. Nat. Struct. Biol.9, 828–832 (2002). CASPubMed Google Scholar
Trievel, R.C., Beach, B.M., Dirk, L.M.A., Houtz, R.L. & Hurley, J.H. Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell111, 91–103 (2002). ArticleCAS Google Scholar
Jacobs, S.A. et al. The active site of the SET domain is constructed on a knot. Nat. Struct. Biol.9, 833–838 (2002). CASPubMed Google Scholar
Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998). ArticleCAS Google Scholar
Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D55, 849–861 (1999). ArticleCAS Google Scholar
Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D58, 1772–1779 (2002). Article Google Scholar
de La Fortelle, E. & Bricogne, G. SHARP: maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol.276, 472–494 (1997). ArticleCAS Google Scholar
Jones, T.A. A graphics model building and refinement system for macromolecules. J. Appl. Crystallogr.11, 268–272 (1978). ArticleCAS Google Scholar
Johnson, M.L., Correia, J.J., Yphantis, D.A. & Halvorson, H.R. Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys. J.36, 575–588 (1981). ArticleCAS Google Scholar
Bitterman, K.J., Anderson, R.M., Cohen, H.Y., Latorre-Esteves, M. & Sinclair, D.A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem.277, 45099–45107 (2002). ArticleCAS Google Scholar