Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex (original) (raw)
Lim, R.Y., Ullman, K.S. & Fahrenkrog, B. Biology and biophysics of the nuclear pore complex and its components. Int. Rev. Cell Mol. Biol.267, 299–342 (2008). ArticleCAS Google Scholar
Beck, M. et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science306, 1387–1390 (2004). ArticleCAS Google Scholar
Beck, M., Lucić, V., Förster, F., Baumeister, W. & Medalia, O. Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature449, 611–615 (2007). ArticleCAS Google Scholar
Melcák, I., Hoelz, A. & Blobel, G. Structure of Nup58/45 suggests flexible nuclear pore diameter by intermolecular sliding. Science315, 1729–1732 (2007). Article Google Scholar
Boehmer, T., Jeudy, S., Berke, I.C. & Schwartz, T.U. Structural and functional studies of Nup107/Nup133 interaction and its implications for the architecture of the nuclear pore complex. Mol. Cell30, 721–731 (2008). ArticleCAS Google Scholar
Debler, E.W. et al. A fence-like coat for the nuclear pore membrane. Mol. Cell32, 815–826 (2008). ArticleCAS Google Scholar
Glavy, J.S. et al. Cell-cycle-dependent phosphorylation of the nuclear pore Nup107–160 subcomplex. Proc. Natl. Acad. Sci. USA104, 3811–3816 (2007). ArticleCAS Google Scholar
Belgareh, N. et al. An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J. Cell Biol.154, 1147–1160 (2001). ArticleCAS Google Scholar
Loïodice, I. et al. The entire Nup107–160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. Mol. Biol. Cell15, 3333–3344 (2004). Article Google Scholar
Walther, T.C. et al. The conserved Nup107–160 complex is critical for nuclear pore complex assembly. Cell113, 195–206 (2003). ArticleCAS Google Scholar
Harel, A. et al. Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol. Cell11, 853–864 (2003). ArticleCAS Google Scholar
D'Angelo, M.A., Anderson, D.J., Richard, E. & Hetzer, M.W. Nuclear pores form de novo from both sides of the nuclear envelope. Science312, 440–443 (2006). ArticleCAS Google Scholar
Orjalo, A.V. et al. The Nup107–160 nucleoporin complex is required for correct bipolar spindle assembly. Mol. Biol. Cell17, 3806–3818 (2006). ArticleCAS Google Scholar
Zuccolo, M. et al. The human Nup107–160 nuclear pore subcomplex contributes to proper kinetochore functions. EMBO J.26, 1853–1864 (2007). ArticleCAS Google Scholar
Siniossoglou, S. et al. Structure and assembly of the Nup84p complex. J. Cell Biol.149, 41–54 (2000). ArticleCAS Google Scholar
Lutzmann, M., Kunze, R., Buerer, A., Aebi, U. & Hurt, E. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J.21, 387–397 (2002). ArticleCAS Google Scholar
Brohawn, S.G., Leksa, N.C., Spear, E.D., Rajashankar, K.R. & Schwartz, T.U. Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Science322, 1369–1373 (2008). ArticleCAS Google Scholar
Hsia, K.C., Stavropoulos, P., Blobel, G. & Hoelz, A. Architecture of a coat for the nuclear pore membrane. Cell131, 1313–1326 (2007). ArticleCAS Google Scholar
Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol.2, e380 (2004). Article Google Scholar
Blobel, G. Intracellular protein topogenesis. Proc. Natl. Acad. Sci. USA77, 1496–1500 (1980). ArticleCAS Google Scholar
Rout, M.P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol.148, 635–652 (2000). ArticleCAS Google Scholar
Drin, G. et al. A general amphipathic alpha-helical motif for sensing membrane curvature. Nat. Struct. Mol. Biol.14, 138–146 (2007). ArticleCAS Google Scholar
Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. A new 3-D reconstruction scheme applied to the 50S ribosomal subunit of E. coli. J. Microsc.141, RP1–RP2 (1986). ArticleCAS Google Scholar
Siniossoglou, S. et al. A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell84, 265–275 (1996). ArticleCAS Google Scholar
Cristea, I.M., Williams, R., Chait, B.T. & Rout, M.P. Fluorescent proteins as proteomic probes. Mol. Cell. Proteomics4, 1933–1941 (2005). ArticleCAS Google Scholar
Lutzmann, M. et al. Reconstitution of Nup157 and Nup145N into the Nup84 complex. J. Biol. Chem.280, 18442–18451 (2005). ArticleCAS Google Scholar
Penczek, P., Radermacher, M. & Frank, J. Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy40, 33–53 (1992). ArticleCAS Google Scholar
van Heel, M. & Frank, J. Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy6, 187–194 (1981). CASPubMed Google Scholar
Gilbert, P. Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol.36, 105–117 (1972). ArticleCAS Google Scholar
Berke, I.C., Boehmer, T., Blobel, G. & Schwartz, T.U. Structural and functional analysis of Nup133 domains reveals modular building blocks of the nuclear pore complex. J. Cell Biol.167, 591–597 (2004). ArticleCAS Google Scholar
Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature432, 573–579 (2004). ArticleCAS Google Scholar
Paoli, M. Protein folds propelled by diversity. Prog. Biophys. Mol. Biol.76, 103–130 (2001). ArticleCAS Google Scholar
Fath, S., Mancias, J.D., Bi, X. & Goldberg, J. Structure and organization of coat proteins in the COPII cage. Cell129, 1325–1336 (2007). ArticleCAS Google Scholar
Ferguson, M.L. et al. Clathrin triskelia show evidence of molecular flexibility. Biophys. J.95, 1945–1955 (2008). ArticleCAS Google Scholar
Akey, C.W. Structural plasticity of the nuclear pore complex. J. Mol. Biol.248, 273–293 (1995). CASPubMed Google Scholar
Chernomordik, L.V. & Kozlov, M.M. Mechanics of membrane fusion. Nat. Struct. Mol. Biol.15, 675–683 (2008). ArticleCAS Google Scholar
Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature425, 737–741 (2003). ArticleCAS Google Scholar
Sheff, M.A. & Thorn, K.S. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast21, 661–670 (2004). ArticleCAS Google Scholar
Mastronarde, D.N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol.152, 36–51 (2005). Article Google Scholar
Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol.116, 190–199 (1996). ArticleCAS Google Scholar
Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol.128, 82–97 (1999). ArticleCAS Google Scholar
Wagenknecht, T., Frank, J., Boublik, M., Nurse, K. & Ofengand, J. Direct localization of the tRNA–anticodon interaction site on the Escherichia coli 30 S ribosomal subunit by electron microscopy and computerized image averaging. J. Mol. Biol.203, 753–760 (1988). ArticleCAS Google Scholar
Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–1612 (2004). ArticleCAS Google Scholar
Chacón, P. & Wriggers, W. Multi-resolution contour-based fitting of macromolecular structures. J. Mol. Biol.317, 375–384 (2002). Article Google Scholar
Wriggers, W., Milligan, R.A. & McCammon, J.A. Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol.125, 185–195 (1999). ArticleCAS Google Scholar