Duelli, D. & Lazebnik, Y. Cell-to-cell fusion as a link between viruses and cancer. Nat. Rev. Cancer7, 968–976 (2007). ArticleCASPubMed Google Scholar
Sapir, A., Avinoam, O., Podbilewicz, B. & Chernomordik, L.V. Viral and developmental cell fusion mechanisms: conservation and divergence. Dev. Cell14, 11–21 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chen, E.H., Grote, E., Mohler, W. & Vignery, A. Cell-cell fusion. FEBS Lett.581, 2181–2193 (2007). ArticleCASPubMed Google Scholar
Earp, L.J., Delos, S.E., Park, H.E. & White, J.M. The many mechanisms of viral membrane fusion proteins. Curr. Top. Microbiol. Immunol.285, 25–66 (2005). CASPubMedPubMed Central Google Scholar
Jahn, R. & Scheller, R.H. SNAREs–engines for membrane fusion. Nat. Rev. Mol. Cell Biol.7, 631–643 (2006). ArticleCASPubMed Google Scholar
Hoppins, S., Lackner, L. & Nunnari, J. The machines that divide and fuse mitochondria. Annu. Rev. Biochem.76, 751–780 (2007). ArticleCASPubMed Google Scholar
Chernomordik, L.V. & Kozlov, M.M. Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem.72, 175–207 (2003). ArticleCASPubMed Google Scholar
Lentz, B.R., Malinin, V., Haque, M.E. & Evans, K. Protein machines and lipid assemblies: current views of cell membrane fusion. Curr. Opin. Struct. Biol.10, 607–615 (2000). ArticleCASPubMed Google Scholar
Chernomordik, L.V., Melikyan, G.B. & Chizmadzhev, Y.A. Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers. Biochim. Biophys. Acta906, 309–352 (1987). ArticleCASPubMed Google Scholar
Chanturiya, A., Chernomordik, L.V. & Zimmerberg, J. Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers. Proc. Natl. Acad. Sci. USA94, 14423–14428 (1997). ArticleCASPubMedPubMed Central Google Scholar
Yang, L. & Huang, H.W. A rhombohedral phase of lipid containing a membrane fusion intermediate structure. Biophys. J.84, 1808–1817 (2003). ArticleCASPubMedPubMed Central Google Scholar
Malinin, V.S., Frederik, P. & Lentz, B.R. Osmotic and curvature stress affect PEG-induced fusion of lipid vesicles but not mixing of their lipids. Biophys. J.82, 2090–2100 (2002). ArticleCASPubMedPubMed Central Google Scholar
Cohen, F.S., Zimmerberg, J. & Finkelstein, A. Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane. J. Gen. Physiol.75, 251–270 (1980). ArticleCASPubMed Google Scholar
Ohki, S. Surface tension, hydration energy and membrane fusion. in Molecular Mechanisms of Membrane Fusion (eds. Ohki, S., Doyle, D., Flanagan, T.D., Hui, S.W. & Mayhew, E.) 123–139 (Plenum, New York, 1988). Chapter Google Scholar
Kozlov, M.M., Leikin, S.L., Chernomordik, L.V., Markin, V.S. & Chizmadzhev, Y.A. Stalk mechanism of vesicle fusion. Intermixing of aqueous contents. Eur. Biophys. J.17, 121–129 (1989). ArticleCASPubMed Google Scholar
Kozlov, M.M. & Markin, V.S. Possible mechanism of membrane fusion. Biophysics28, 255–261 (1983). The work was the first to propose the stalk intermediate of membrane fusion and presents calculations of the stalk energy as a function of the spontaneous curvature of the membrane monolayers. CAS Google Scholar
Kozlovsky, Y., Chernomordik, L. & Kozlov, M.M. Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm. Biophys. J.83, 2634–2651 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kozlovsky, Y., Efrat, A., Siegel, D.P. & Kozlov, M.M. Stalk phase formation: effects of dehydration and saddle splay modulus. Biophys. J.87, 2508–2521 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kozlovsky, Y. & Kozlov, M.M. Stalk model of membrane fusion: solution of energy crisis. Biophys. J.82, 882–895 (2002). Energy of fusion stalk is computed using the tilt-splay model for membrane mechanics. The analysis predicts a biologically feasible energy barrier of stalk formation. ArticleCASPubMedPubMed Central Google Scholar
Kuzmin, P.I., Zimmerberg, J., Chizmadzhev, Y.A. & Cohen, F.S. A quantitative model for membrane fusion based on low-energy intermediates. Proc. Natl. Acad. Sci. USA98, 7235–7240 (2001). ArticleCASPubMedPubMed Central Google Scholar
Siegel, D.P. Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. Biophys. J.65, 2124–2140 (1993). ArticleCASPubMedPubMed Central Google Scholar
Katsov, K., Muller, M. & Schick, M. Field theoretic study of bilayer membrane fusion. I. Hemifusion mechanism. Biophys. J.87, 3277–3290 (2004). ArticleCASPubMedPubMed Central Google Scholar
Katsov, K., Muller, M. & Schick, M. Field theoretic study of bilayer membrane fusion: II. Mechanism of a stalk-hole complex. Biophys. J.90, 915–926 (2006). ArticleCASPubMed Google Scholar
Marrink, S.J. & Mark, A.E. The Mechanism of Vesicle Fusion as Revealed by Molecular Dynamics Simulations. J. Am. Chem. Soc.125, 11144–11145 (2003). ArticleCASPubMed Google Scholar
Marrink, S.J. & Tieleman, D.P. Molecular dynamics simulation of spontaneous membrane fusion during a cubic-hexagonal phase transition. Biophys. J.83, 2386–2392 (2002). ArticleCASPubMedPubMed Central Google Scholar
Knecht, V. & Marrink, S.J. Molecular dynamics simulations of lipid vesicle fusion in atomic detail. Biophys. J.92, 4254–4261 (2007). The work presents the molecular dynamic simulation of membrane fusion in atomic detail, largely confirms the fusion pathway through a hemifusion diaphragm and provides a computational basis for more detailed investigation of the fusion intermediates. ArticleCASPubMedPubMed Central Google Scholar
Muller, M., Katsov, K. & Schick, M. A new mechanism of model membrane fusion determined from Monte Carlo simulation. Biophys. J.85, 1611–1623 (2003). ArticleCASPubMedPubMed Central Google Scholar
Noguchi, H. & Takasu, M. Self-assembly of amphiphiles into vesicles: A Brownian dynamics simulation. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics64, 041913 (2001). CAS Google Scholar
Noguchi, H. & Takasu, M. Fusion pathways of vesicles: a Brownian dynamics simulation. J. Chem. Phys.115, 9547–9551 (2001). ArticleCAS Google Scholar
Grafmuller, A., Shillcock, J. & Lipowsky, R. Pathway of membrane fusion with two tension-dependent energy barriers. Phys. Rev. Lett.98, 218101 (2007). ArticlePubMedCAS Google Scholar
Shillcock, J.C. & Lipowsky, R. Tension-induced fusion of bilayer membranes and vesicles. Nat. Mater.4, 225–228 (2005). ArticleCASPubMed Google Scholar
Efrat, A., Chernomordik, L.V. & Kozlov, M.M. Point-like protrusion as a prestalk intermediate in membrane fusion pathway. Biophys. J.92, L61–L63 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hamm, M. & Kozlov, M.M. Tilt model of inverted amphiphilic mesophases. Eur. Phys. J. B6, 519–528 (1998). ArticleCAS Google Scholar
Hamm, M. & Kozlov, M.M. Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. E3, 323–335 (2000). ArticleCAS Google Scholar
May, S., Kozlovsky, Y., Ben-Shaul, A. & Kozlov, M.M. Tilt modulus of a lipid monolayer. Eur. Phys. J. E14, 299–308 (2004). ArticleCASPubMed Google Scholar
Siegel, D.P. & Kozlov, M.M. The gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior. Biophys. J.87, 366–374 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lee, J.Y. & Schick, M. Dependence of the energies of fusion on the intermembrane separation: optimal and constrained. J. Chem. Phys.127, 075102 (2007). ArticleCASPubMed Google Scholar
Lee, J.Y. & Schick, M. Field theoretic study of bilayer membrane fusion III: membranes with leaves of different composition. Biophys. J.92, 3938–3948 (2007). ArticleCASPubMedPubMed Central Google Scholar
Marrink, S.J., de Vries, A.H. & Mark, A.E. Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B108, 750–760 (2004). ArticleCAS Google Scholar
Lindahl, E. & Edholm, O. Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys. J.79, 426–433 (2000). ArticleCASPubMedPubMed Central Google Scholar
Yang, L. & Huang, H.W. Observation of a membrane fusion intermediate structure. Science297, 1877–1879 (2002). ArticleCASPubMed Google Scholar
Cornell, B.A., Fletcher, G.C., Middlehurst, J. & Separovic, F. The lower limit to the size of small sonicated phospholipid vesicles. Biochim. Biophys. Acta690, 15–19 (1982). ArticleCASPubMed Google Scholar
Kasson, P.M. & Pande, V.S. Control of membrane fusion mechanism by lipid composition: predictions from ensemble molecular dynamics. PLoS Comput. Biol.3, e220 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Chernomordik, L.V., Melikyan, G.B., Abidor, I.G., Markin, V.S. & Chizmadzhev, Y.A. The shape of lipid molecules and monolayer membrane fusion. Biochim. Biophys. Acta812, 643–655 (1985). ArticleCAS Google Scholar
Kozlov, M.M. & Chernomordik, L.V. A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and lipid rearrangements. Biophys. J.75, 1384–1396 (1998). ArticleCASPubMedPubMed Central Google Scholar
Martens, S., Kozlov, M.M. & McMahon, H.T. How synaptotagmin promotes membrane fusion. Science316, 1205–1208 (2007). The work demonstrates the ability of synaptotagmin C2to bend membranes into 17-nm-diameter tubes with fusogenic end caps and suggests a new model of protein mediated membrane fusion based on calcium-dependent insertion of the synaptotagmin C2domain into the membrane matrix. ArticleCASPubMed Google Scholar
Chernomordik, L. Non-bilayer lipids and biological fusion intermediates. Chem. Phys. Lipids81, 203–213 (1996). ArticleCASPubMed Google Scholar
Blood, P.D. & Voth, G.A. Direct observation of Bin/amphiphysin/Rvs (BAR) domain-induced membrane curvature by means of molecular dynamics simulations. Proc. Natl. Acad. Sci. USA103, 15068–15072 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ayton, G.S., Blood, P.D. & Voth, G.A. Membrane remodeling from N-BAR domain interactions: insights from multi-scale simulation. Biophys. J.92, 3595–3602 (2007). ArticleCASPubMedPubMed Central Google Scholar
Campelo, F., McMahon, H.T. & Kozlov, M.M. The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys. J. (in the press) (2008). Google Scholar
Chernomordik, L.V., Frolov, V.A., Leikina, E., Bronk, P. & Zimmerberg, J. The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation. J. Cell Biol.140, 1369–1382 (1998). The first work (i) describing hemifusion mediated by wild-type protein fusogen, (ii) identifying restricted hemifusion intermediates and (iii) reporting the dependence of fusion pore formation on the lipid composition of the distal membrane leaflets. ArticleCASPubMedPubMed Central Google Scholar
Zimmerberg, J., Blumenthal, R., Sarkar, D.P., Curran, M. & Morris, S.J. Restricted movement of lipid and aqueous dyes through pores formed by influenza hemagglutinin during cell fusion. J. Cell Biol.127, 1885–1894 (1994). ArticleCASPubMed Google Scholar
Leikina, E. & Chernomordik, L.V. Reversible merger of membranes at the early stage of influenza hemagglutinin-mediated fusion. Mol. Biol. Cell11, 2359–2371 (2000). ArticleCASPubMedPubMed Central Google Scholar
Markosyan, R.M., Bates, P., Cohen, F.S. & Melikyan, G.B. A study of low pH-induced refolding of Env of avian sarcoma and leukosis virus into a six-helix bundle. Biophys. J.87, 3291–3298 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zaitseva, E., Mittal, A., Griffin, D.E. & Chernomordik, L.V. Class II fusion protein of alphaviruses drives membrane fusion through the same pathway as class I proteins. J. Cell Biol.169, 167–177 (2005). ArticleCASPubMedPubMed Central Google Scholar
Yoon, T.Y., Okumus, B., Zhang, F., Shin, Y.K. & Ha, T. Multiple intermediates in SNARE-induced membrane fusion. Proc. Natl. Acad. Sci. USA103, 19731–19736 (2006). By imaging real-time dynamics of single fusion events between the SNARE-carrying liposomes, this work identifies fusion intermediates with distinct extents of lipid mixing and characterizes the dwell times of docked and hemifused states and the lifetime of early fusion pores. ArticleCASPubMedPubMed Central Google Scholar
Melikyan, G.B., Niles, W.D. & Cohen, F.S. Influenza virus hemagglutinin-induced cell-planar bilayer fusion: quantitative dissection of fusion pore kinetics into stages. J. Gen. Physiol.102, 1151–1170 (1993). ArticleCASPubMed Google Scholar
Mittal, A., Leikina, E., Chernomordik, L.V. & Bentz, J. Kinetically differentiating influenza hemagglutinin fusion and hemifusion machines. Biophys. J.85, 1713–1724 (2003). ArticleCASPubMedPubMed Central Google Scholar
Zimmerberg, J. & Chernomordik, L.V. Neuroscience. Synaptic membranes bend to the will of a neurotoxin. Science310, 1626–1627 (2005). ArticlePubMed Google Scholar
Zampighi, G.A. et al. Conical electron tomography of a chemical synapse: vesicles docked to the active zone are hemi-fused. Biophys. J.91, 2910–2918 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wong, J.L., Koppel, D.E., Cowan, A.E. & Wessel, G.M. Membrane hemifusion is a stable intermediate of exocytosis. Dev. Cell12, 653–659 (2007). ArticleCASPubMedPubMed Central Google Scholar
Schaub, J.R., Lu, X., Doneske, B., Shin, Y.K. & McNew, J.A. Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I. Nat. Struct. Mol. Biol.13, 748–750 (2006). ArticleCASPubMed Google Scholar
Razinkov, V.I., Melikyan, G.B., Epand, R.M., Epand, R.F. & Cohen, F.S. Effects of spontaneous bilayer curvature on influenza virus-mediated fusion pores. J. Gen. Physiol.112, 409–422 (1998). ArticleCASPubMedPubMed Central Google Scholar
Chernomordik, L.V., Leikina, E., Frolov, V., Bronk, P. & Zimmerberg, J. An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids. J. Cell Biol.136, 81–94 (1997). ArticleCASPubMedPubMed Central Google Scholar
Chernomordik, L.V. et al. Lysolipids reversibly inhibit Ca2+-, GTP- and pH-dependent fusion of biological membranes. FEBS Lett.318, 71–76 (1993). This paper demonstrates that lipids known to inhibit hemifusion stage of fusion between protein-free bilayers also inhibit disparate biological fusion reactions, suggesting that these reactions proceed through a common hemifusion intermediate. ArticleCASPubMed Google Scholar
Melikyan, G.B., Barnard, R.J., Abrahamyan, L.G., Mothes, W. & Young, J.A. Imaging individual retroviral fusion events: from hemifusion to pore formation and growth. Proc. Natl. Acad. Sci. USA102, 8728–8733 (2005). Different stages of virus–cell fusion mediated by avian sarcoma and leukosis virus envelope glycoproteins were dissected by imaging single virions. The findings suggest that fusion involves a direct transition from hemifusion into a small and then growing pore within a small virus-2013 cell contact zone. ArticleCASPubMedPubMed Central Google Scholar
Markosyan, R.M., Cohen, F.S. & Melikyan, G.B. Time-resolved imaging of HIV-1 Env-mediated lipid and content mixing between a single virion and cell membrane. Mol. Biol. Cell16, 5502–5513 (2005). ArticleCASPubMedPubMed Central Google Scholar
Liu, T., Wang, T., Chapman, E.R. & Weisshaar, J.C. Productive hemifusion intermediates in fast vesicle fusion driven by neuronal SNAREs. Biophys. J.94, 1303–1314 (2008). ArticleCASPubMed Google Scholar
Frolov, V.A., Dunina-Barkovskaya, A.Y., Samsonov, A.V. & Zimmerberg, J. Membrane permeability changes at early stages of influenza hemagglutinin-mediated fusion. Biophys. J.85, 1725–1733 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lindau, M. & Almers, W. Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. Curr. Opin. Cell Biol.7, 509–517 (1995). ArticleCASPubMed Google Scholar
Jackson, M.B. & Chapman, E.R. Fusion pores and fusion machines in Ca2+-triggered exocytosis. Annu. Rev. Biophys. Biomol. Struct.35, 135–160 (2006). ArticleCASPubMed Google Scholar
Jackson, M.B. In search of the fusion pore of exocytosis. Biophys. Chem.126, 201–208 (2007). ArticleCASPubMed Google Scholar
Kemble, G.W., Danieli, T. & White, J.M. Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell76, 383–391 (1994). Replacing transmembrane domain of influenza hemagglutinin with a lipid anchor yielded the first direct demonstration that protein fusogens can induce hemifusion and emphasized the functional importance of transmembrane domain of the fusogen. ArticleCASPubMed Google Scholar
Cleverley, D.Z. & Lenard, J. The transmembrane domain in viral fusion: essential role for a conserved glycine residue in vesicular stomatitis virus G protein. Proc. Natl. Acad. Sci. USA95, 3425–3430 (1998). ArticleCASPubMedPubMed Central Google Scholar
Grote, E., Baba, M., Ohsumi, Y. & Novick, P.J. Geranylgeranylated SNAREs are dominant inhibitors of membrane fusion. J. Cell Biol.151, 453–466 (2000). ArticleCASPubMedPubMed Central Google Scholar
Xu, Y., Zhang, F., Su, Z., McNew, J.A. & Shin, Y.K. Hemifusion in SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol.12, 417–422 (2005). This study on fusion between SNARE-proteoliposomes was the first direct demonstration that intracellular fusogens can mediate hemifusion. ArticleCASPubMed Google Scholar
Langosch, D., Hofmann, M. & Ungermann, C. The role of transmembrane domains in membrane fusion. Cell. Mol. Life Sci.64, 850–864 (2007). ArticleCASPubMed Google Scholar
Melikyan, G.B., Lin, S., Roth, M.G. & Cohen, F.S. Amino acid sequence requirements of the transmembrane and cytoplasmic domains of influenza virus hemagglutinin for viable membrane fusion. Mol. Biol. Cell10, 1821–1836 (1999). ArticleCASPubMedPubMed Central Google Scholar
Frolov, V., Cho, M.-S., Bronk, P., Reese, T. & Zimmerberg, J. Multiple local contact sites are induced by GPI-linked influenza hemagglutinin during hemifusion and flickering pore formation. Traffic1, 622–630 (2000). ArticleCASPubMed Google Scholar
Markosyan, R.M., Cohen, F.S. & Melikyan, G.B. The lipid-anchored ectodomain of influenza virus hemagglutinin (GPI-HA) is capable of inducing nonenlarging fusion pores. Mol. Biol. Cell11, 1143–1152 (2000). ArticleCASPubMedPubMed Central Google Scholar
McNew, J.A. et al. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J. Cell Biol.150, 105–117 (2000). ArticleCASPubMedPubMed Central Google Scholar
Jun, Y., Xu, H., Thorngren, N. & Wickner, W. Sec18p and Vam7p remodel trans-SNARE complexes to permit a lipid-anchored R-SNARE to support yeast vacuole fusion. EMBO J.26, 4935–4945 (2007). ArticleCASPubMedPubMed Central Google Scholar
Jun, Y. & Wickner, W. Assays of vacuole fusion resolve the stages of docking, lipid mixing, and content mixing. Proc. Natl. Acad. Sci. USA104, 13010–13015 (2007). ArticleCASPubMedPubMed Central Google Scholar
Vogel, S.S., Leikina, E.A. & Chernomordik, L.V. Lysophosphatidylcholine reversibly arrests exocytosis and viral fusion at a stage between triggering and membrane merger. J. Biol. Chem.268, 25764–25768 (1993). ArticleCASPubMed Google Scholar
Reese, C., Heise, F. & Mayer, A. Trans-SNARE pairing can precede a hemifusion intermediate in intracellular membrane fusion. Nature436, 410–414 (2005). ArticleCASPubMed Google Scholar
Amatore, C. et al. Regulation of exocytosis in chromaffin cells by trans-insertion of lysophosphatidylcholine and arachidonic acid into the outer leaflet of the cell membrane. ChemBioChem7, 1998–2003 (2006). ArticleCASPubMed Google Scholar
Churchward, M.A. et al. Specific lipids supply critical negative spontaneous curvature–an essential component of native Ca2+-triggered membrane fusion. Biophys. J.94, 3976–3986 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ramos, C., Rafikova, E.R., Melikov, K. & Chernomordik, L.V. Transmembrane proteins are not required for early stages of nuclear envelope assembly. Biochem. J.400, 393–400 (2006). ArticleCASPubMedPubMed Central Google Scholar
Podbilewicz, B. et al. The C. elegans developmental fusogen EFF-1 mediates homotypic fusion in heterologous cells and in vivo. Dev. Cell11, 471–481 (2006). ArticleCASPubMed Google Scholar
Kobayashi, T. et al. Separation and characterization of late endosomal membrane domains. J. Biol. Chem.277, 32157–32164 (2002). ArticleCASPubMed Google Scholar
Byrne, R.D. et al. PLCγ is enriched on poly-phosphoinositide-rich vesicles to control nuclear envelope assembly. Cell Signal.19, 913–922 (2006). ArticlePubMedCAS Google Scholar
Rigoni, M. et al. Equivalent effects of snake PLA2 neurotoxins and lysophospholipid-fatty acid mixtures. Science310, 1678–1680 (2005). ArticleCASPubMed Google Scholar
Blumenthal, R., Clague, M.J., Durell, S.R. & Epand, R.M. Membrane fusion. Chem. Rev.103, 53–69 (2003). ArticleCASPubMed Google Scholar
Lai, A.L., Park, H., White, J.M. & Tamm, L.K. Fusion peptide of influenza hemagglutinin requires a fixed angle boomerang structure for activity. J. Biol. Chem.281, 5760–5770 (2006). ArticleCASPubMed Google Scholar
Shmulevitz, M. & Duncan, R. A new class of fusion-associated small transmembrane (FAST) proteins encoded by the non-enveloped fusogenic reoviruses. EMBO J.19, 902–912 (2000). ArticleCASPubMedPubMed Central Google Scholar
Roche, S., Bressanelli, S., Rey, F.A. & Gaudin, Y. Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science313, 187–191 (2006). This high resolution x-ray study, along with an earlier work of this group, characterizes a new class of viral fusion proteins (class III) that uses a bipartite fusion domain consisting of two short, noncontiguous hydrophobic loops. ArticleCASPubMed Google Scholar
Antonny, B. Membrane deformation by protein coats. Curr. Opin. Cell Biol.18, 386–394 (2006). ArticleCASPubMed Google Scholar
McMahon, H.T. & Gallop, J.L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature438, 590–596 (2005). ArticleCASPubMed Google Scholar
Chapman, E.R. & Davis, A.F. Direct interaction of a Ca2+-binding loop of synaptotagmin with lipid bilayers. J. Biol. Chem.273, 13995–14001 (1998). ArticleCASPubMed Google Scholar
Ford, M.G. et al. Curvature of clathrin-coated pits driven by epsin. Nature419, 361–366 (2002). ArticleCASPubMed Google Scholar
Cohen, F.S. & Melikyan, G.B. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J. Membr. Biol.199, 1–14 (2004). ArticleCASPubMed Google Scholar
Zimmerberg, J., Akimov, S.A. & Frolov, V. Synaptotagmin: fusogenic role for calcium sensor? Nat. Struct. Mol. Biol.13, 301–303 (2006). ArticleCASPubMed Google Scholar
Kozlov, M.M. & Chernomordik, L.V. The protein coat in membrane fusion: lessons from fission. Traffic3, 256–267 (2002). ArticlePubMed Google Scholar
Leikina, E. et al. Influenza hemagglutinins outside of the contact zone are necessary for fusion pore expansion. J. Biol. Chem.279, 26526–26532 (2004). ArticleCASPubMed Google Scholar
Yang, X., Kurteva, S., Ren, X., Lee, S. & Sodroski, J. Stoichiometry of envelope glycoprotein trimers in the entry of human immunodeficiency virus type 1. J. Virol.79, 12132–12147 (2005). ArticleCASPubMedPubMed Central Google Scholar
Knecht, V. & Grubmuller, H. Mechanical coupling via the membrane fusion SNARE protein syntaxin 1A: a molecular dynamics study. Biophys. J.84, 1527–1547 (2003). ArticleCASPubMedPubMed Central Google Scholar