Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition (original) (raw)
Rando, O.J. & Ahmad, K. Rules and regulation in the primary structure of chromatin. Curr. Opin. Cell Biol.19, 250–256 (2007). ArticleCAS Google Scholar
Morris, C.A. & Moazed, D. Centromere assembly and propagation. Cell128, 647–650 (2007). ArticleCAS Google Scholar
Widom, J. Structure, dynamics, and function of chromatin in vitro. Annu. Rev. Biophys. Biomol. Struct.27, 285–327 (1998). ArticleCAS Google Scholar
Rando, O.J. & Chang, H.Y. Genome-wide views of chromatin structure. Annu. Rev. Biochem.78, 245–271 (2009). ArticleCAS Google Scholar
Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature389, 251–260 (1997). ArticleCAS Google Scholar
Segal, E. et al. A genomic code for nucleosome positioning. Nature442, 772–778 (2006). ArticleCAS Google Scholar
Satchwell, S.C., Drew, H.R. & Travers, A.A. Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol.191, 659–675 (1986). ArticleCAS Google Scholar
Rice, P.A., Yang, S., Mizuuchi, K. & Nash, H.A. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell87, 1295–1306 (1996). ArticleCAS Google Scholar
Struhl, K. Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc. Natl. Acad. Sci. USA82, 8419–8423 (1985). ArticleCAS Google Scholar
Yuan, G.C. et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science309, 626–630 (2005). ArticleCAS Google Scholar
Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet.39, 1235–1244 (2007). ArticleCAS Google Scholar
Whitehouse, I. & Tsukiyama, T. Antagonistic forces that position nucleosomes in vivo. Nat. Struct. Mol. Biol.13, 633–640 (2006). ArticleCAS Google Scholar
Segal, E. & Widom, J. Poly(dA:dT) tracts: major determinants of nucleosome organization. Curr. Opin. Struct. Biol.19, 65–71 (2009). ArticleCAS Google Scholar
Field, Y. et al. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput. Biol.4, e1000216 (2008). Article Google Scholar
Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature458, 362–366 (2009). ArticleCAS Google Scholar
Black, B.E. et al. Structural determinants for generating centromeric chromatin. Nature430, 578–582 (2004). ArticleCAS Google Scholar
Meluh, P.B., Yang, P., Glowczewski, L., Koshland, D. & Smith, M.M. Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell94, 607–613 (1998). ArticleCAS Google Scholar
Mizuguchi, G., Xiao, H., Wisniewski, J., Smith, M.M. & Wu, C. Nonhistone Scm3 and histones CenH3–H4 assemble the core of centromere-specific nucleosomes. Cell129, 1153–1164 (2007). ArticleCAS Google Scholar
Black, B.E. et al. Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol. Cell25, 309–322 (2007). ArticleCAS Google Scholar
Black, B.E. & Bassett, E.A. The histone variant CENP-A and centromere specification. Curr. Opin. Cell Biol.20, 91–100 (2008). ArticleCAS Google Scholar
Camahort, R. et al. Scm3 is essential to recruit the histone H3 variant Cse4 to centromeres and to maintain a functional kinetochore. Mol. Cell26, 853–865 (2007). ArticleCAS Google Scholar
Stoler, S. et al. Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc. Natl. Acad. Sci. USA104, 10571–10576 (2007). ArticleCAS Google Scholar
Pidoux, A.L. et al. Fission yeast Scm3: a CENP-A receptor required for integrity of subkinetochore chromatin. Mol. Cell33, 299–311 (2009). ArticleCAS Google Scholar
Williams, J.S., Hayashi, T., Yanagida, M. & Russell, P. Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin. Mol. Cell33, 287–298 (2009). ArticleCAS Google Scholar
Baker, R.E. CENP-A targeting moves a step back. Mol. Cell33, 411–413 (2009). ArticleCAS Google Scholar
Aravind, L., Iyer, L.M. & Wu, C. Domain architectures of the Scm3p protein provide insights into centromere function and evolution. Cell Cycle6, 2511–2515 (2007). ArticleCAS Google Scholar
Sanchez-Pulido, L., Pidoux, A.L., Ponting, C.P. & Allshire, R.C. Common ancestry of the CENP-A chaperones Scm3 and HJURP. Cell137, 1173–1174 (2009). Article Google Scholar
Dunleavy, E.M. et al. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell137, 485–497 (2009). ArticleCAS Google Scholar
Foltz, D.R. et al. Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell137, 472–484 (2009). ArticleCAS Google Scholar
Dalal, Y., Furuyama, T., Vermaak, D. & Henikoff, S. Structure, dynamics, and evolution of centromeric nucleosomes. Proc. Natl. Acad. Sci. USA104, 15974–15981 (2007). ArticleCAS Google Scholar
Cumberledge, S. & Carbon, J. Mutational analysis of meiotic and mitotic centromere function in Saccharomyces cerevisiae. Genetics117, 203–212 (1987). CASPubMedPubMed Central Google Scholar
Baker, R.E. & Rogers, K. Genetic and genomic analysis of the AT-rich centromere DNA element II of Saccharomyces cerevisiae. Genetics171, 1463–1475 (2005). ArticleCAS Google Scholar
Malik, H.S. & Henikoff, S. Conflict begets complexity: the evolution of centromeres. Curr. Opin. Genet. Dev.12, 711–718 (2002). ArticleCAS Google Scholar
Espelin, C.W., Simons, K.T., Harrison, S.C. & Sorger, P.K. Binding of the essential Saccharomyces cerevisiae kinetochore protein Ndc10p to CDEII. Mol. Biol. Cell14, 4557–4568 (2003). ArticleCAS Google Scholar
Fazio, T., Visnapuu, M.L., Wind, S. & Greene, E.C. DNA curtains and nanoscale curtain rods: high-throughput tools for single molecule imaging. Langmuir24, 10524–10531 (2008). ArticleCAS Google Scholar
Visnapuu, M.L., Fazio, T., Wind, S. & Greene, E.C. Parallel arrays of geometric nanowells for assembling curtains of DNA with controlled lateral dispersion. Langmuir24, 11293–11299 (2008). ArticleCAS Google Scholar
Sekinger, E.A., Moqtaderi, Z. & Struhl, K. Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol. Cell18, 735–748 (2005). ArticleCAS Google Scholar
Thåström, A., Bingham, L.M. & Widom, J. Nucleosomal locations of dominant DNA sequence motifs for histone-DNA interactions and nucleosome positioning. J. Mol. Biol.338, 695–709 (2004). Article Google Scholar
Thåström, A., Lowary, P.T. & Widom, J. Measurement of histone-DNA interaction free energy in nucleosomes. Methods33, 33–44 (2004). Article Google Scholar
Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature446, 572–576 (2007). ArticleCAS Google Scholar
Creyghton, M.P. et al. H2AZ is enriched at Polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell135, 649–661 (2008). ArticleCAS Google Scholar
Meneghini, M.D., Wu, M. & Madhani, H.D. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell112, 725–736 (2003). ArticleCAS Google Scholar
Raisner, R.M. et al. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell123, 233–248 (2005). ArticleCAS Google Scholar
Zhang, H., Roberts, D.N. & Cairns, B.R. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell123, 219–231 (2005). ArticleCAS Google Scholar
Zilberman, D., Coleman-Derr, D., Ballinger, T. & Henikoff, S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature456, 125–129 (2008). ArticleCAS Google Scholar
Gribnau, J., Diderich, K., Pruzina, S., Calzolari, R. & Fraser, P. Intergenic transcription and developmental remodeling of chromatin subdomains in the human β-globin locus. Mol. Cell5, 377–386 (2000). ArticleCAS Google Scholar
Bank, A. Regulation of human fetal hemoglobin: new players, new complexities. Blood107, 435–443 (2006). ArticleCAS Google Scholar
Sankaran, V.G. et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science322, 1839–1842 (2008). ArticleCAS Google Scholar
Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R. & Young, R.A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell130, 77–88 (2007). ArticleCAS Google Scholar
Mavrich, T.N. et al. Nucleosome organization in the Drosophila genome. Nature453, 358–362 (2008). ArticleCAS Google Scholar
Mavrich, T.N. et al. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res.18, 1073–1083 (2008). ArticleCAS Google Scholar
Ozsolak, F., Song, J.S., Liu, X.S. & Fisher, D.E. High-throughput mapping of the chromatin structure of human promoters. Nat. Biotechnol.25, 244–248 (2007). ArticleCAS Google Scholar
Schones, D.E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell132, 887–898 (2008). ArticleCAS Google Scholar
Wieland, G., Orthaus, S., Ohndorf, S., Diekmann, S. & Hemmerich, P. Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae. Mol. Cell. Biol.24, 6620–6630 (2004). ArticleCAS Google Scholar
Collins, K.A., Furuyama, S. & Biggins, S. Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr. Biol.14, 1968–1972 (2004). ArticleCAS Google Scholar
Wittmeyer, J., Saha, A. & Cairns, B. DNA translocation and nucleosome remodeling assays by the RSC chromatin remodeling complex. Methods Enzymol.377, 322–343 (2004). ArticleCAS Google Scholar
Luger, K., Rechsteiner, T.J. & Richmond, T.J. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol.304, 3–19 (1999). ArticleCAS Google Scholar
Prasad, T.K. et al. A DNA-translocating Snf2 molecular motor: Saccharomyces cerevisiae Rdh54 displays processive translocation and extrudes DNA loops. J. Mol. Biol.369, 940–953 (2007). ArticleCAS Google Scholar