- Holstege, F.C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).
Article CAS PubMed Google Scholar
- Fondell, J.D., Ge, H. & Roeder, R.G. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl. Acad. Sci. USA 93, 8329–8333 (1996).
Article CAS PubMed PubMed Central Google Scholar
- Esnault, C. et al. Mediator-dependent recruitment of TFIIH modules in preinitiation complex. Mol. Cell 31, 337–346 (2008).
Article CAS PubMed Google Scholar
- Davis, J.A., Takagi, Y., Kornberg, R.D. & Asturias, F.A. Structure of the yeast RNA polymerase II holoenzyme: mediator conformation and polymerase interaction. Mol. Cell 10, 409–415 (2002).
Article CAS PubMed Google Scholar
- Johnson, K.M., Wang, J., Smallwood, A., Arayata, C. & Carey, M. TFIID and human mediator coactivator complexes assemble cooperatively on promoter DNA. Genes Dev. 16, 1852–1863 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Naar, A.M., Taatjes, D.J., Zhai, W., Nogales, E. & Tjian, R. Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation. Genes Dev. 16, 1339–1344 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Tyner, S.D. et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 415, 45–53 (2002).
Article CAS PubMed Google Scholar
- Maier, B. et al. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 18, 306–319 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Vousden, K.H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).
Article CAS PubMed Google Scholar
- Espinosa, J.M. Mechanisms of regulatory diversity within the p53 transcriptional network. Oncogene 27, 4013–4023 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Wang, G. et al. Mediator requirement for both recruitment and postrecruitment steps in transcription initiation. Mol. Cell 17, 683–694 (2005).
Article CAS PubMed Google Scholar
- Drane, P., Barel, M., Balbo, M. & Frade, R. Identification of RB18A, a 205 kDa new p53 regulatory protein which shares antigenic and functional properties with p53. Oncogene 15, 3013–3024 (1997).
Article CAS PubMed Google Scholar
- Ito, M. et al. Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol. Cell 3, 361–370 (1999).
Article CAS PubMed Google Scholar
- Jimenez, G.S. et al. A transactivation-deficient mouse model provides insights into Trp53 regulation and function. Nat. Genet. 26, 37–43 (2000).
Article CAS PubMed Google Scholar
- Johnson, T.M., Hammond, E.M., Giaccia, A. & Attardi, L.D. The p53QS transactivation-deficient mutant shows stress-specific apoptotic activity and induces embryonic lethality. Nat. Genet. 37, 145–152 (2005).
Article CAS PubMed Google Scholar
- Lin, J., Chen, J., Elenbaas, B. & Levine, A.J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8, 1235–1246 (1994).
Article CAS PubMed Google Scholar
- Nister, M. et al. p53 must be competent for transcriptional regulation to suppress tumor formation. Oncogene 24, 3563–3573 (2005).
Article CAS PubMed Google Scholar
- Taatjes, D.J., Naar, A.M., Andel, F., Nogales, E. & Tjian, R. Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295, 1058–1062 (2002).
Article CAS PubMed Google Scholar
- Johnson, K.M., Wang, J., Smallwood, A. & Carey, M. The immobilized template assay for measuring cooperativity in eukaryotic transcription complex assembly. Methods Enzymol. 380, 207–219 (2004).
Article CAS PubMed Google Scholar
- Knuesel, M.T., Meyer, K.D., Bernecky, C. & Taatjes, D.J. The human CDK8 subcomplex is a molecular switch that controls Mediator co-activator function. Genes Dev. 23, 439–451 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Espinosa, J.M., Verdun, R.E. & Emerson, B. p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage. Mol. Cell 12, 1015–1027 (2003).
Article CAS PubMed Google Scholar
- Gaudreau, L., Adam, M. & Ptashne, M. Activation of transcription in vitro by recruitment of the yeast RNA polymerase II holoenzyme. Mol. Cell 1, 913–916 (1998).
Article CAS PubMed Google Scholar
- Keaveney, M. & Struhl, K. Activator-mediated recruitment of the RNA polymerase II machinery is the predominant mechanism for transcriptional activation in yeast. Mol. Cell 1, 917–924 (1998).
Article CAS PubMed Google Scholar
- Yang, F., DeBeaumont, R., Zhou, S. & Naar, A.M. The activator-recruited cofactor/Mediator coactivator subunit ARC92 is a functionally important target of the VP16 transcriptional activator. Proc. Natl. Acad. Sci. USA 101, 2339–2344 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Mittler, G. et al. A novel docking site on Mediator is critical for activation by VP16 in mammalian cells. EMBO J. 22, 6494–6504 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Rachez, C. et al. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 398, 824–828 (1999).
Article CAS PubMed Google Scholar
- Li, P. et al. Regulation of p53 target gene expression by peptidylarginine deiminase 4. Mol. Cell. Biol. 28, 4745–4758 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Glover-Cutter, K., Kim, S., Espinosa, J.M. & Bentley, D.L. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat. Struct. Mol. Biol. 15, 71–78 (2008).
Article CAS PubMed Google Scholar
- Donner, A.J., Szostek, S., Hoover, J.M. & Espinosa, J.M. CDK8 is a stimulus-specific positive coregulator of p53 target genes. Mol. Cell 27, 121–133 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Saunders, A., Core, L.J. & Lis, J.T. Breaking barriers to transcription elongation. Nat. Rev. Mol. Cell Biol. 7, 557–567 (2006).
Article CAS PubMed Google Scholar
- Taatjes, D.J., Schneider-Poetsch, T. & Tjian, R. Distinct conformational states of nuclear receptor-bound CRSP–Med complexes. Nat. Struct. Mol. Biol. 11, 664–671 (2004).
Article CAS PubMed Google Scholar
- Chi, T. & Carey, M. Assembly of the isomerized TFIIA–TFIID–TATA ternary complex is necessary and sufficient for gene activation. Genes Dev. 10, 2540–2550 (1996).
Article CAS PubMed Google Scholar
- Horikoshi, M., Hai, T., Lin, Y.S., Green, M.R. & Roeder, R.G. Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex. Cell 54, 1033–1042 (1988).
Article CAS PubMed Google Scholar
- Guermah, M., Malik, S. & Roeder, R.G. Involvement of TFIID and USA components in transcriptional activation of the human immunodeficiency virus promoter by NF-κB and Sp1. Mol. Cell. Biol. 18, 3234–3244 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Roberts, S.G.E. & Green, M.R. Activator-induced conformational change in general transcription factor TFIIB. Nature 371, 717–720 (1994).
Article CAS PubMed Google Scholar
- Xiao, H. et al. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol. Cell. Biol. 14, 7013–7024 (1994).
Article CAS PubMed PubMed Central Google Scholar
- Thut, C.J., Chen, J.L., Klemm, R. & Tjian, R. p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science 267, 100–104 (1995).
Article CAS PubMed Google Scholar
- Lu, H. & Levine, A.J. Human TAFII31 protein is a transcriptional coactivator of the p53 protein. Proc. Natl. Acad. Sci. USA 92, 5154–5158 (1995).
Article CAS PubMed PubMed Central Google Scholar
- Kornberg, R.D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30, 235–239 (2005).
Article CAS PubMed Google Scholar
- Malik, S. & Roeder, R.G. Dynamic regulation of pol II transcription by the mammalian Mediator complex. Trends Biochem. Sci. 30, 256–263 (2005).
Article CAS PubMed Google Scholar
- Di Lello, P. et al. Structure of the Tfb1/p53 complex: insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol. Cell 22, 731–740 (2006).
Article CAS PubMed Google Scholar
- Li, A.G. et al. An acetylation switch in p53 mediates holo-TFIID recruitment. Mol. Cell 28, 408–421 (2007).
Article PubMed Google Scholar
- Momand, J., Zambetti, G.P., Olson, D.C., George, D. & Levine, A.J. The MDM-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69, 1237–1245 (1992).
Article CAS PubMed Google Scholar
- Van Orden, K., Giebler, H.A., Lemasson, I., Gonzales, M. & Nyborg, J.K. Binding of p53 to the KIX domain of CREB binding protein. A potential link to human T-cell leukemia virus, type I-associated leukemogenesis. J. Biol. Chem. 274, 26321–26328 (1999).
Article CAS PubMed Google Scholar
- Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).
Article CAS PubMed Google Scholar
- Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).
Article CAS PubMed PubMed Central Google Scholar
- McKinney, K., Mattia, M., Gottifredi, V. & Prives, C. p53 linear diffusion along DNA requires its C terminus. Mol. Cell 16, 413–424 (2004).
Article CAS PubMed Google Scholar
- Okorokov, A.L. et al. The structure of p53 tumor suppressor protein reveals the basis for its functional plasticity. EMBO J. 25, 5191–5200 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Kettenberger, H., Armache, K. & Cramer, P. Complete RNA polymerase II elongation complex structure and its interaction with NTP and TFIIS. Mol. Cell 16, 955–965 (2004).
Article CAS PubMed Google Scholar
- Batta, K. & Kundu, T.K. Activation of p53 function by human transcriptional coactivator PC4: role of protein-protein interaction, DNA bending, and posttranslational modifications. Mol. Cell. Biol. 27, 7603–7614 (2007).
Article CAS PubMed PubMed Central Google Scholar
- McKinney, K. & Prives, C. Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein. Mol. Cell. Biol. 22, 6797–6808 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Gomes, N.P. et al. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Genes Dev. 20, 601–612 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).
Article CAS PubMed Google Scholar
- Bottcher, B., Wynne, S.A. & Crowther, R.A. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386, 88–91 (1997).
Article CAS PubMed Google Scholar
- De Carlo, S., El-Bez, C., Alvarez-Rua, C., Borge, J. & Dubochet, J. Cryo-negative staining reduces electron-beam sensitivity of vitrified biological particles. J. Struct. Biol. 138, 216–226 (2002).
Article CAS PubMed Google Scholar
- Ohi, M., Li, Y., Cheng, Y. & Walz, T. Negative staining and image classification—powerful tools in modern electron microscopy. Biol. Proced. Online 6, 23–34 (2004).
Article CAS PubMed PubMed Central Google Scholar