Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy (original) (raw)
Lim, R.Y., Ullman, K.S. & Fahrenkrog, B. Biology and biophysics of the nuclear pore complex and its components. Int. Rev. Cell Mol. Biol.267, 299–342 (2008). ArticleCASPubMedPubMed Central Google Scholar
Beck, M., Lucic, V., Forster, F., Baumeister, W. & Medalia, O. Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature449, 611–615 (2007). ArticleCASPubMed Google Scholar
Brohawn, S.G., Partridge, J.R., Whittle, J.R. & Schwartz, T.U. The nuclear pore complex has entered the atomic age. Structure17, 1156–1168 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kampmann, M. & Blobel, G. Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex. Nat. Struct. Mol. Biol.16, 782–788 (2009). ArticleCASPubMedPubMed Central Google Scholar
Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature450, 695–701 (2007). ArticleCASPubMed Google Scholar
Schrader, N. et al. Structural basis of the nic96 subcomplex organization in the nuclear pore channel. Mol. Cell29, 46–55 (2008). ArticleCASPubMed Google Scholar
Brohawn, S.G. & Schwartz, T.U. Molecular architecture of the Nup84–Nup145C–Sec13 edge element in the nuclear pore complex lattice. Nat. Struct. Mol. Biol.16, 1173–1177 (2009). ArticleCASPubMedPubMed Central Google Scholar
Brohawn, S.G., Leksa, N.C., Spear, E.D., Rajashankar, K.R. & Schwartz, T.U. Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Science322, 1369–1373 (2008). ArticleCASPubMedPubMed Central Google Scholar
Seo, H.S. et al. Structural and functional analysis of Nup120 suggests ring formation of the Nup84 complex. Proc. Natl. Acad. Sci. USA106, 14281–14286 (2009). ArticleCASPubMedPubMed Central Google Scholar
Debler, E.W. et al. A fence-like coat for the nuclear pore membrane. Mol. Cell32, 815–826 (2008). ArticleCASPubMed Google Scholar
Ajtai, K., Toft, D.J. & Burghardt, T.P. Path and extent of cross-bridge rotation during muscle contraction. Biochemistry33, 5382–5391 (1994). ArticleCASPubMed Google Scholar
Axelrod, D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys. J.26, 557–573 (1979). ArticleCASPubMedPubMed Central Google Scholar
Rocheleau, J.V., Edidin, M. & Piston, D.W. Intrasequence GFP in class I MHC molecules, a rigid probe for fluorescence anisotropy measurements of the membrane environment. Biophys. J.84, 4078–4086 (2003). ArticleCASPubMedPubMed Central Google Scholar
Vrabioiu, A.M. & Mitchison, T.J. Structural insights into yeast septin organization from polarized fluorescence microscopy. Nature443, 466–469 (2006). ArticleCASPubMed Google Scholar
Vrabioiu, A.M. & Mitchison, T.J. Symmetry of septin hourglass and ring structures. J. Mol. Biol.372, 37–49 (2007). ArticleCASPubMed Google Scholar
Corrie, J.E. et al. Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature400, 425–430 (1999). ArticleCASPubMed Google Scholar
Mattheyses, A.L., Kampmann, M., Atkinson, C.E. & Simon, S.M. Fluorescence anisotropy reveals order and disorder of protein domains in the nuclear pore complex. Biophys. J.99, 1706–1717 (2010). ArticleCASPubMedPubMed Central Google Scholar
Rosell, F.I. & Boxer, S.G. Polarized absorption spectra of green fluorescent protein single crystals: transition dipole moment directions. Biochemistry42, 177–183 (2003). ArticleCASPubMed Google Scholar
Jeudy, S. & Schwartz, T.U. Crystal structure of nucleoporin Nic96 reveals a novel, intricate helical domain architecture. J. Biol. Chem.282, 34904–34912 (2007). ArticleCASPubMed Google Scholar
Berke, I.C., Boehmer, T., Blobel, G. & Schwartz, T.U. Structural and functional analysis of Nup133 domains reveals modular building blocks of the nuclear pore complex. J. Cell Biol.167, 591–597 (2004). ArticleCASPubMedPubMed Central Google Scholar
Boehmer, T., Jeudy, S., Berke, I.C. & Schwartz, T.U. Structural and functional studies of Nup107/Nup133 interaction and its implications for the architecture of the nuclear pore complex. Mol. Cell30, 721–731 (2008). ArticleCASPubMedPubMed Central Google Scholar
Whittle, J.R. & Schwartz, T.U. Architectural nucleoporins Nup157/170 and Nup133 are structurally related and descend from a second ancestral element. J. Biol. Chem.284, 28442–28452 (2009). ArticleCASPubMedPubMed Central Google Scholar
Choe, S. & Sun, S.X. The elasticity of α-helices. J. Chem. Phys.122, 244912 (2005). ArticlePubMed Google Scholar
Devos, D. et al. Simple fold composition and modular architecture of the nuclear pore complex. Proc. Natl. Acad. Sci. USA103, 2172–2177 (2006). ArticleCASPubMedPubMed Central Google Scholar
Melcák, I., Hoelz, A. & Blobel, G. Structure of Nup58/45 suggests flexible nuclear pore diameter by intermolecular sliding. Science315, 1729–1732 (2007). ArticlePubMed Google Scholar
Shulga, N. et al. In vivo nuclear transport kinetics in Saccharomyces cerevisiae: a role for heat shock protein 70 during targeting and translocation. J. Cell Biol.135, 329–339 (1996). ArticleCASPubMed Google Scholar
Brachmann, C.B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast14, 115–132 (1998). ArticleCASPubMed Google Scholar
Sheff, M.A. & Thorn, K.S. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast21, 661–670 (2004). ArticleCASPubMed Google Scholar
Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol.116, 190–199 (1996). ArticleCASPubMed Google Scholar
Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–1612 (2004). ArticleCASPubMed Google Scholar
Elsliger, M.A., Wachter, R.M., Hanson, G.T., Kallio, K. & Remington, S.J. Structural and spectral response of green fluorescent protein variants to changes in pH. Biochemistry38, 5296–5301 (1999). ArticleCASPubMed Google Scholar
Maegawa, Y. et al. Structure of the catalytic nucleotide-binding subunit A of A-type ATP synthase from Pyrococcus horikoshii reveals a novel domain related to the peripheral stalk. Acta Crystallogr. D Biol. Crystallogr.62, 483–488 (2006). ArticlePubMed Google Scholar
Diepholz, M. et al. A different conformation for EGC stator subcomplex in solution and in the assembled yeast V-ATPase: possible implications for regulatory disassembly. Structure16, 1789–1798 (2008). ArticleCASPubMed Google Scholar
Shi, J., Blundell, T.L. & Mizuguchi, K. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol.310, 243–257 (2001). ArticleCASPubMed Google Scholar