Recognition of enhancer element–specific histone methylation by TIP60 in transcriptional activation (original) (raw)
Berk, A.J. Activation of RNA polymerase II transcription. Curr. Opin. Cell Biol.11, 330–335 (1999). ArticleCASPubMed Google Scholar
McKenna, N.J. & O'Malley, B.W. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell108, 465–474 (2002). ArticleCASPubMed Google Scholar
Metivier, R. et al. Dynamics of estrogen receptor-mediated transcriptional activation of responsive genes in vivo: apprehending transcription in four dimensions. Adv. Exp. Med. Biol.617, 129–138 (2008). ArticleCASPubMed Google Scholar
Metivier, R. et al. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell115, 751–763 (2003). ArticleCASPubMed Google Scholar
Shang, Y., Hu, X., DiRenzo, J., Lazar, M.A. & Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell103, 843–852 (2000). ArticleCASPubMed Google Scholar
Burakov, D., Crofts, L.A., Chang, C.P. & Freedman, L.P. Reciprocal recruitment of DRIP/mediator and p160 coactivator complexes in vivo by estrogen receptor. J. Biol. Chem.277, 14359–14362 (2002). ArticleCASPubMed Google Scholar
Utley, R.T. & Cote, J. The MYST family of histone acetyltransferases. Curr. Top. Microbiol. Immunol.274, 203–236 (2003). CASPubMed Google Scholar
Kusch, T. et al. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science306, 2084–2087 (2004). ArticleCASPubMed Google Scholar
Ikura, T. et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell102, 463–473 (2000). ArticleCASPubMed Google Scholar
Sapountzi, V., Logan, I.R. & Robson, C.N. Cellular functions of TIP60. Int. J. Biochem. Cell Biol.38, 1496–1509 (2006). ArticleCASPubMed Google Scholar
Kimura, A. & Horikoshi, M. Tip60 acetylates six lysines of a specific class in core histones in vitro. Genes Cells3, 789–800 (1998). ArticleCASPubMed Google Scholar
Yamamoto, T. & Horikoshi, M. Novel substrate specificity of the histone acetyltransferase activity of HIV-1-Tat interactive protein Tip60. J. Biol. Chem.272, 30595–30598 (1997). ArticleCASPubMed Google Scholar
Tang, Y., Luo, J., Zhang, W. & Gu, W. Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell24, 827–839 (2006). ArticleCASPubMed Google Scholar
Sun, Y., Jiang, X., Chen, S., Fernandes, N. & Price, B.D. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl. Acad. Sci. USA102, 13182–13187 (2005). ArticleCASPubMedPubMed Central Google Scholar
Patel, J.H. et al. The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Mol. Cell Biol.24, 10826–10834 (2004). ArticleCASPubMedPubMed Central Google Scholar
Brady, M.E. et al. Tip60 is a nuclear hormone receptor coactivator. J. Biol. Chem.274, 17599–17604 (1999). ArticleCASPubMed Google Scholar
Gaughan, L., Logan, I.R., Cook, S., Neal, D.E. & Robson, C.N. Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J. Biol. Chem.277, 25904–25913 (2002). ArticleCASPubMed Google Scholar
Jeong, K.W., Lee, Y.H. & Stallcup, M.R. Recruitment of the SWI/SNF chromatin remodeling complex to steroid hormone-regulated promoters by nuclear receptor coactivator flightless-I. J. Biol. Chem.284, 29298–29309 (2009). ArticleCASPubMedPubMed Central Google Scholar
Pan, Y.F. et al. Regulation of estrogen receptor-mediated long range transcription via evolutionarily conserved distal response elements. J. Biol. Chem.283, 32977–32988 (2008). ArticleCASPubMed Google Scholar
Sun, J., Nawaz, Z. & Slingerland, J.M. Long-range activation of GREB1 by estrogen receptor via three distal consensus estrogen-responsive elements in breast cancer cells. Mol. Endocrinol.21, 2651–2662 (2007). ArticleCASPubMed Google Scholar
Carroll, J.S. et al. Genome-wide analysis of estrogen receptor binding sites. Nat. Genet.38, 1289–1297 (2006). ArticleCASPubMed Google Scholar
Bretschneider, N. et al. E2-mediated cathepsin D (CTSD) activation involves looping of distal enhancer elements. Mol. Oncol.2, 182–190 (2008). ArticlePubMedPubMed Central Google Scholar
Gaughan, L., Brady, M.E., Cook, S., Neal, D.E. & Robson, C.N. Tip60 is a co-activator specific for class I nuclear hormone receptors. J. Biol. Chem.276, 46841–46848 (2001). ArticleCASPubMed Google Scholar
Muchardt, C. & Yaniv, M. A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J.12, 4279–4290 (1993). ArticleCASPubMedPubMed Central Google Scholar
Dunaief, J.L. et al. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell79, 119–130 (1994). ArticleCASPubMed Google Scholar
Robertson, A.G. et al. Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding. Genome Res.18, 1906–1917 (2008). ArticleCASPubMedPubMed Central Google Scholar
Heintzman, N.D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet.39, 311–318 (2007). ArticleCASPubMed Google Scholar
Bernstein, B.E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl. Acad. Sci. USA99, 8695–8700 (2002). ArticleCASPubMedPubMed Central Google Scholar
Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell129, 823–837 (2007). ArticleCASPubMed Google Scholar
Jacobs, S.A. & Khorasanizadeh, S. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science295, 2080–2083 (2002). ArticleCASPubMed Google Scholar
Nielsen, P.R. et al. Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature416, 103–107 (2002). ArticleCASPubMed Google Scholar
Min, J., Zhang, Y. & Xu, R.M. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev.17, 1823–1828 (2003). ArticleCASPubMedPubMed Central Google Scholar
Flanagan, J.F. et al. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature438, 1181–1185 (2005). ArticleCASPubMed Google Scholar
Milne, T.A. et al. Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol. Cell38, 853–863 (2010). ArticleCASPubMedPubMed Central Google Scholar
Sun, Y. et al. Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nat. Cell Biol.11, 1376–1382 (2009). ArticleCASPubMedPubMed Central Google Scholar
Dreijerink, K.M. et al. Menin links estrogen receptor activation to histone H3K4 trimethylation. Cancer Res.66, 4929–4935 (2006). ArticleCASPubMed Google Scholar
Mo, R., Rao, S.M. & Zhu, Y.J. Identification of the MLL2 complex as a coactivator for estrogen receptor alpha. J. Biol. Chem.281, 15714–15720 (2006). ArticleCASPubMed Google Scholar
Nakamura, T. et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol. Cell10, 1119–1128 (2002). ArticleCASPubMed Google Scholar
Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell121, 873–885 (2005). ArticleCASPubMed Google Scholar
Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature419, 407–411 (2002). ArticleCASPubMed Google Scholar
Ng, H.H., Robert, F., Young, R.A. & Struhl, K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell11, 709–719 (2003). ArticleCASPubMed Google Scholar
Choi, J., Heo, K. & An, W. Cooperative action of TIP48 and TIP49 in H2A.Z exchange catalyzed by acetylation of nucleosomal H2A. Nucleic Acids Res.37, 5993–6007 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wolf, E. et al. Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase. Cell94, 439–449 (1998). ArticleCASPubMed Google Scholar
Park, J.H., Sun, X.J. & Roeder, R.G. The SANT domain of p400 ATPase represses acetyltransferase activity and coactivator function of TIP60 in basal p21 gene expression. Mol. Cell Biol.30, 2750–2761 (2010). ArticleCASPubMedPubMed Central Google Scholar
Murr, R. et al. Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat. Cell Biol.8, 91–99 (2006). ArticleCASPubMed Google Scholar
Sun, Y., Xu, Y., Roy, K. & Price, B.D. DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity. Mol. Cell Biol.27, 8502–8509 (2007). ArticleCASPubMedPubMed Central Google Scholar
Halkidou, K. et al. Expression of Tip60, an androgen receptor coactivator, and its role in prostate cancer development. Oncogene22, 2466–2477 (2003). ArticleCASPubMed Google Scholar
Gorrini, C. et al. Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature448, 1063–1067 (2007). ArticleCASPubMed Google Scholar
Paro, R. & Hogness, D.S. The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc. Natl. Acad. Sci. USA88, 263–267 (1991). ArticleCASPubMedPubMed Central Google Scholar
Ghisletti, S. et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity32, 317–328 (2010). ArticleCASPubMed Google Scholar
Nishioka, K. et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev.16, 479–489 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dillon, S.C., Zhang, X., Trievel, R.C. & Cheng, X. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol.6, 227 (2005). ArticlePubMedPubMed Central Google Scholar
Rozenblatt-Rosen, O. et al. The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc. Natl. Acad. Sci. USA95, 4152–4157 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lee, S. et al. Crucial roles for interactions between MLL3/4 and INI1 in nuclear receptor transactivation. Mol. Endocrinol.23, 610–619 (2009). ArticleCASPubMedPubMed Central Google Scholar
Dou, Y. et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat. Struct. Mol. Biol.13, 713–719 (2006). ArticleCASPubMed Google Scholar
Collins, R.E. et al. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nat. Struct. Mol. Biol.15, 245–250 (2008). ArticleCASPubMedPubMed Central Google Scholar