HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation (original) (raw)

References

  1. Tsukiyama-Kohara, K., Iizuka, N., Kohara, M. & Nomoto, A. Internal ribosome entry site within hepatitis C virus RNA. J. Virol. 66, 1476–1483 (1992).
    CAS PubMed PubMed Central Google Scholar
  2. Bukh, J., Purcell, R.H. & Miller, R.H. Sequence analysis of the 5′ noncoding region of hepatitis C virus. Proc. Natl. Acad. Sci. USA 89, 4942–4946 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  3. Simmonds, P. et al. Sequence variability in the 5′ non-coding region of hepatitis C virus: identification of a new virus type and restrictions on sequence diversity. J. Gen. Virol. 74, 661–668 (1993).
    Article CAS PubMed Google Scholar
  4. Fraser, C.S. & Doudna, J.A. Structural and mechanistic insights into hepatitis C viral translation initiation. Nat. Rev. Microbiol. 5, 29–38 (2007).
    Article CAS PubMed Google Scholar
  5. Jackson, R.J., Hellen, C.U. & Pestova, T.V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113–127 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  6. Kieft, J.S., Zhou, K., Jubin, R. & Doudna, J.A. Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7, 194–206 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  7. Kolupaeva, V.G., Pestova, T.V. & Hellen, C.U. An enzymatic footprinting analysis of the interaction of 40S ribosomal subunits with the internal ribosomal entry site of hepatitis C virus. J. Virol. 74, 6242–6250 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  8. Lytle, J.R., Wu, L. & Robertson, H.D. The ribosome binding site of hepatitis C virus mRNA. J. Virol. 75, 7629–7636 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  9. Lytle, J.R., Wu, L. & Robertson, H.D. Domains on the hepatitis C virus internal ribosome entry site for 40s subunit binding. RNA 8, 1045–1055 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  10. Pestova, T.V., Shatsky, I.N., Fletcher, S.P., Jackson, R.J. & Hellen, C.U. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev. 12, 67–83 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  11. Otto, G.A. & Puglisi, J.D. The pathway of HCV IRES-mediated translation initiation. Cell 119, 369–380 (2004).
    Article CAS PubMed Google Scholar
  12. Ji, H., Fraser, C.S., Yu, Y., Leary, J. & Doudna, J.A. Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA. Proc. Natl. Acad. Sci. USA 101, 16990–16995 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  13. Fraser, C.S., Hershey, J.W. & Doudna, J.A. The pathway of hepatitis C virus mRNA recruitment to the human ribosome. Nat. Struct. Mol. Biol. 16, 397–404 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  14. Locker, N., Easton, L.E. & Lukavsky, P.J. HCV and CSFV IRES domain II mediate eIF2 release during 80S ribosome assembly. EMBO J. 26, 795–805 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  15. Terenin, I.M., Dmitriev, S.E., Andreev, D.E. & Shatsky, I.N. Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2. Nat. Struct. Mol. Biol. 15, 836–841 (2008).
    Article CAS PubMed Google Scholar
  16. Kim, J.H., Park, S.M., Park, J.H., Keum, S.J. & Jang, S.K. eIF2A mediates translation of hepatitis C viral mRNA under stress conditions. EMBO J. 30, 2454–2464 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  17. Kieft, J.S. et al. The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. J. Mol. Biol. 292, 513–529 (1999).
    Article CAS PubMed Google Scholar
  18. Lukavsky, P.J. Structure and function of HCV IRES domains. Virus Res. 139, 166–171 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  19. Sizova, D.V., Kolupaeva, V.G., Pestova, T.V., Shatsky, I.N. & Hellen, C.U. Specific interaction of eukaryotic translation initiation factor 3 with the 5′ nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. J. Virol. 72, 4775–4782 (1998).
    CAS PubMed PubMed Central Google Scholar
  20. Honda, M., Brown, E.A. & Lemon, S.M. Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA 2, 955–968 (1996).
    CAS PubMed PubMed Central Google Scholar
  21. Berry, K.E., Waghray, S. & Doudna, J.A. The HCV IRES pseudoknot positions the initiation codon on the 40S ribosomal subunit. RNA 16, 1559–1569 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  22. Filbin, M.E. & Kieft, J.S. HCV IRES domain IIb affects the configuration of coding RNA in the 40S subunit's decoding groove. RNA 17, 1258–1273 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  23. Spahn, C.M. et al. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit. Science 291, 1959–1962 (2001).
    Article CAS PubMed Google Scholar
  24. Boehringer, D., Thermann, R., Ostareck-Lederer, A., Lewis, J.D. & Stark, H. Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES. Structure 13, 1695–1706 (2005).
    Article CAS PubMed Google Scholar
  25. Fukushi, S. et al. Ribosomal protein S5 interacts with the internal ribosomal entry site of hepatitis C virus. J. Biol. Chem. 276, 20824–20826 (2001).
    Article CAS PubMed Google Scholar
  26. Wower, J., Scheffer, P., Sylvers, L.A., Wintermeyer, W. & Zimmermann, R.A. Topography of the E site on the Escherichia coli ribosome. EMBO J. 12, 617–623 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  27. Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5-Å resolution. Science 292, 883–896 (2001).
    Article CAS PubMed Google Scholar
  28. Döring, T., Mitchell, P., Osswald, M., Bochkariov, D. & Brimacombe, R. The decoding region of 16S RNA; a cross-linking study of the ribosomal A, P and E sites using tRNA derivatized at position 32 in the anticodon loop. EMBO J. 13, 2677–2685 (1994).
    Article PubMed PubMed Central Google Scholar
  29. Odreman-Macchioli, F., Baralle, F.E. & Buratti, E. Mutational analysis of the different bulge regions of hepatitis C virus domain II and their influence on internal ribosome entry site translational ability. J. Biol. Chem. 276, 41648–41655 (2001).
    Article CAS PubMed Google Scholar
  30. Kalliampakou, K.I., Psaridi-Linardaki, L. & Mavromara, P. Mutational analysis of the apical region of domain II of the HCV IRES. FEBS Lett. 511, 79–84 (2002).
    Article CAS PubMed Google Scholar
  31. Passmore, L.A. et al. The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol. Cell 26, 41–50 (2007).
    Article CAS PubMed Google Scholar
  32. Rabl, J., Leibundgut, M., Ataide, S.F., Haag, A. & Ban, N. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331, 730–736 (2011).
    Article CAS PubMed Google Scholar
  33. Lukavsky, P.J., Kim, I., Otto, G.A. & Puglisi, J.D. Structure of HCV IRES domain II determined by NMR. Nat. Struct. Biol. 10, 1033–1038 (2003).
    Article CAS PubMed Google Scholar
  34. Pestova, T.V., Hellen, C.U. & Shatsky, I.N. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol. Cell Biol. 16, 6859–6869 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  35. Wilson, J.E., Pestova, T.V., Hellen, C.U. & Sarnow, P. Initiation of protein synthesis from the A site of the ribosome. Cell 102, 511–520 (2000).
    Article CAS PubMed Google Scholar
  36. Hartz, D., McPheeters, D.S., Traut, R. & Gold, L. Extension inhibition analysis of translation initiation complexes. Methods Enzymol. 164, 419–425 (1988).
    Article CAS PubMed Google Scholar
  37. Devaraj, A., Shoji, S., Holbrook, E.D. & Fredrick, K. A role for the 30S subunit E site in maintenance of the translational reading frame. RNA 15, 255–265 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  38. Monro, R.E. & Marcker, K.A. Ribosome-catalysed reaction of puromycin with a formylmethionine-containing oligonucleotide. J. Mol. Biol. 25, 347–350 (1967).
    Article CAS PubMed Google Scholar
  39. Peske, F., Savelsbergh, A., Katunin, V.I., Rodnina, M.V. & Wintermeyer, W. Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation. J. Mol. Biol. 343, 1183–1194 (2004).
    Article CAS PubMed Google Scholar
  40. Dibrov, S.M. et al. Structure of a hepatitis C virus RNA domain in complex with a translation inhibitor reveals a binding mode reminiscent of riboswitches. Proc. Natl. Acad. Sci. USA 109, 5223–5228 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  41. Robert, F. & Brakier-Gingras, L. A functional interaction between ribosomal proteins S7 and S11 within the bacterial ribosome. J. Biol. Chem. 278, 44913–44920 (2003).
    Article CAS PubMed Google Scholar
  42. Galkin, O. et al. Roles of the negatively charged N-terminal extension of Saccharomyces cerevisiae ribosomal protein S5 revealed by characterization of a yeast strain containing human ribosomal protein S5. RNA 13, 2116–2128 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  43. Geigenmüller, U. & Nierhaus, K.H. Significance of the third tRNA binding site, the E site, on E. coli ribosomes for the accuracy of translation: an occupied E site prevents the binding of non-cognate aminoacyl-tRNA to the A site. EMBO J. 9, 4527–4533 (1990).
    Article PubMed PubMed Central Google Scholar
  44. Petropoulos, A.D. & Green, R. Further in vitro exploration fails to support the allosteric three-site model. J. Biol. Chem. 287, 11642–11648 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  45. Uemura, S. et al. Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464, 1012–1017 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  46. Chen, C. et al. Allosteric vs. spontaneous exit-site (E-site) tRNA dissociation early in protein synthesis. Proc. Natl. Acad. Sci. USA 108, 16980–16985 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  47. Malygin, A.A., Yanshina, D.D. & Karpova, G.G. Interactions of human ribosomal proteins S16 and S5 with an 18S rRNA fragment containing their binding sites. Biochimie 91, 1180–1186 (2009).
    Article CAS PubMed Google Scholar
  48. Ian'shina, D.D., Malygin, A.A. & Karpova, G.G. Binding of human ribosomal protein S5 with the 18S rRNA fragment 1203–1236/1521–1698 [in Russian]. Mol. Biol. (Mosk.) 40, 460–467 (2006).
    CAS Google Scholar
  49. Yu, Y. et al. Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing. Nucleic Acids Res. 37, 5167–5182 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  50. Antúnez de Mayolo, P. & Woolford, J.L. Jr. Interactions of yeast ribosomal protein rpS14 with RNA. J. Mol. Biol. 333, 697–709 (2003).
    Article PubMed CAS Google Scholar
  51. Lomakin, I.B., Kolupaeva, V.G., Marintchev, A., Wagner, G. & Pestova, T.V. Position of eukaryotic initiation factor eIF1 on the 40S ribosomal subunit determined by directed hydroxyl radical probing. Genes Dev. 17, 2786–2797 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  52. Acker, M.G. et al. Kinetic analysis of late steps of eukaryotic translation initiation. J. Mol. Biol. 385, 491–506 (2009).
    Article CAS PubMed Google Scholar
  53. Fringer, J.M., Acker, M.G., Fekete, C.A., Lorsch, J.R. & Dever, T.E. Coupled release of eukaryotic translation initiation factors 5B and 1A from 80S ribosomes following subunit joining. Mol. Cell. Biol. 27, 2384–2397 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  54. van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).
    Article CAS PubMed Google Scholar
  55. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).
    Article CAS PubMed Google Scholar
  56. Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0-Å resolution. Science 334, 1524–1529 (2011).
    Article CAS PubMed Google Scholar
  57. Stoneley, M., Paulin, F.E., Le Quesne, J.P., Chappell, S.A. & Willis, A.E. C-Myc 5′ untranslated region contains an internal ribosome entry segment. Oncogene 16, 423–428 (1998).
    Article CAS PubMed Google Scholar
  58. Keel, A.Y., Easton, L.E., Lukavsky, P.J. & Kieft, J.S. Large-scale native preparation of in vitro transcribed RNA. Methods Enzymol. 469, 3–25 (2009).
    Article CAS PubMed Google Scholar
  59. Ohi, M., Li, Y., Cheng, Y. & Walz, T. Negative Staining and Image Classification - Powerful Tools in Modern Electron Microscopy. Biol. Proced. Online 6, 23–34 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  60. Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).
    Article PubMed Google Scholar
  61. Grigorieff, N. FREALIGN: high-resolution refinement of single particle structures. J. Struct. Biol. 157, 117–125 (2007).
    Article CAS PubMed Google Scholar
  62. Sousa, D. & Grigorieff, N. Ab initio resolution measurement for single particle structures. J. Struct. Biol. 157, 201–210 (2007).
    Article CAS PubMed Google Scholar
  63. Kleywegt, G.J. & Jones, T.A. xdlMAPMAN and xdlDATAMAN - programs for reformatting, analysis and manipulation of biomacromolecular electron-density maps and reflection data sets. Acta Crystallogr. D Biol. Crystallogr. 52, 826–828 (1996).
    Article CAS PubMed Google Scholar
  64. Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
    Article CAS PubMed Google Scholar

Download references