Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming (original) (raw)

References

  1. Scheffner, M., Nuber, U. & Huibregtse, J.M. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373, 81–83 (1995).
    Article CAS Google Scholar
  2. Scheffner, M. & Staub, O. HECT E3s and human disease. BMC Biochem. 8 (suppl. 1), S6 (2007).
    Article Google Scholar
  3. Marín, I. Animal HECT ubiquitin ligases: evolution and functional implications. BMC Evol. Biol. 10, 56 (2010).
    Article Google Scholar
  4. Rotin, D. & Kumar, S. Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 10, 398–409 (2009).
    Article CAS Google Scholar
  5. Verdecia, M.A. et al. Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol. Cell 11, 249–259 (2003).
    Article CAS Google Scholar
  6. Kamadurai, H.B. et al. Insights into ubiquitin transfer cascades from a structure of a UbcH5B~ubiquitin-HECT(NEDD4L) complex. Mol. Cell 36, 1095–1102 (2009).
    Article CAS Google Scholar
  7. Kim, H.C., Steffen, A.M., Oldham, M.L., Chen, J. & Huibregtse, J.M. Structure and function of a HECT domain ubiquitin-binding site. EMBO Rep. 12, 334–341 (2011).
    Article CAS Google Scholar
  8. Maspero, E. et al. Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep. 12, 342–349 (2011).
    Article CAS Google Scholar
  9. Kim, H.C. & Huibregtse, J.M. Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol. Cell Biol. 29, 3307–3318 (2009).
    Article CAS Google Scholar
  10. Wang, M. & Pickart, C.M. Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis. EMBO J. 24, 4324–4333 (2005).
    Article CAS Google Scholar
  11. Remaut, H. & Waksman, G. Protein-protein interaction through β-strand addition. Trends Biochem. Sci. 31, 436–444 (2006).
    Article CAS Google Scholar
  12. Wang, M., Cheng, D., Peng, J. & Pickart, C.M. Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase. EMBO J. 25, 1710–1719 (2006).
    Article CAS Google Scholar
  13. Dou, H., Buetow, L., Sibbet, G.J., Cameron, K. & Huang, D.T. BIRC7–E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Nat. Struct. Mol. Biol. 19, 876–883 (2012).
    Article CAS Google Scholar
  14. Plechanovová, A., Jaffray, E.G., Tatham, M.H., Naismith, J.H. & Hay, R.T. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489, 115–120 (2012).
    Article Google Scholar
  15. Reverter, D. & Lima, C.D. Insights into E3 ligase activity revealed by a SUMO–RanGAP1–Ubc9–Nup358 complex. Nature 435, 687–692 (2005).
    Article CAS Google Scholar
  16. Salvat, C., Wang, G., Dastur, A., Lyon, N. & Huibregtse, J.M. The -4 phenylalanine is required for substrate ubiquitination catalyzed by HECT ubiquitin ligases. J. Biol. Chem. 279, 18935–18943 (2004).
    Article CAS Google Scholar
  17. Ronchi, V.P., Klein, J.M. & Haas, A.L. E6AP/UBE3A ubiquitin ligase harbors two e2~ubiquitin binding sites. J. Biol. Chem. published online, doi:10.1074/jbc.M113.458059 (25 February 2013).
  18. Hochstrasser, M. Lingering mysteries of ubiquitin-chain assembly. Cell 124, 27–34 (2006).
    Article Google Scholar
  19. Woelk, T. et al. Molecular mechanisms of coupled monoubiquitination. Nat. Cell Biol. 8, 1246–1254 (2006).
    Article CAS Google Scholar
  20. Serniwka, S.A., & Shaw, G.S. The structure of the UbcH8-ubiquitin complex shows a unique ubiquitin interaction site. Biochemistry 48, 12169–12179 (2009).
    Article CAS Google Scholar
  21. Dimasi, N., Flot, D., Dupeux, F. & Marquez, J.A. Expression, crystallization and X-ray data collection from microcrystals of the extracellular domain of the human inhibitory receptor expressed on myeloid cells IREM-1. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 63, 204–208 (2007).
    Article CAS Google Scholar
  22. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).
    Article CAS Google Scholar
  23. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–189 (2010).
    Article CAS Google Scholar
  24. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007).
    Article CAS Google Scholar
  25. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).
  26. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
    Article CAS Google Scholar
  27. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
    Article CAS Google Scholar
  28. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).
    Article CAS Google Scholar

Download references