Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming (original) (raw)
References
Scheffner, M., Nuber, U. & Huibregtse, J.M. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature373, 81–83 (1995). ArticleCAS Google Scholar
Scheffner, M. & Staub, O. HECT E3s and human disease. BMC Biochem.8 (suppl. 1), S6 (2007). Article Google Scholar
Marín, I. Animal HECT ubiquitin ligases: evolution and functional implications. BMC Evol. Biol.10, 56 (2010). Article Google Scholar
Rotin, D. & Kumar, S. Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol.10, 398–409 (2009). ArticleCAS Google Scholar
Verdecia, M.A. et al. Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol. Cell11, 249–259 (2003). ArticleCAS Google Scholar
Kamadurai, H.B. et al. Insights into ubiquitin transfer cascades from a structure of a UbcH5B~ubiquitin-HECT(NEDD4L) complex. Mol. Cell36, 1095–1102 (2009). ArticleCAS Google Scholar
Kim, H.C., Steffen, A.M., Oldham, M.L., Chen, J. & Huibregtse, J.M. Structure and function of a HECT domain ubiquitin-binding site. EMBO Rep.12, 334–341 (2011). ArticleCAS Google Scholar
Maspero, E. et al. Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep.12, 342–349 (2011). ArticleCAS Google Scholar
Kim, H.C. & Huibregtse, J.M. Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol. Cell Biol.29, 3307–3318 (2009). ArticleCAS Google Scholar
Wang, M. & Pickart, C.M. Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis. EMBO J.24, 4324–4333 (2005). ArticleCAS Google Scholar
Remaut, H. & Waksman, G. Protein-protein interaction through β-strand addition. Trends Biochem. Sci.31, 436–444 (2006). ArticleCAS Google Scholar
Wang, M., Cheng, D., Peng, J. & Pickart, C.M. Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase. EMBO J.25, 1710–1719 (2006). ArticleCAS Google Scholar
Dou, H., Buetow, L., Sibbet, G.J., Cameron, K. & Huang, D.T. BIRC7–E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Nat. Struct. Mol. Biol.19, 876–883 (2012). ArticleCAS Google Scholar
Plechanovová, A., Jaffray, E.G., Tatham, M.H., Naismith, J.H. & Hay, R.T. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature489, 115–120 (2012). Article Google Scholar
Reverter, D. & Lima, C.D. Insights into E3 ligase activity revealed by a SUMO–RanGAP1–Ubc9–Nup358 complex. Nature435, 687–692 (2005). ArticleCAS Google Scholar
Salvat, C., Wang, G., Dastur, A., Lyon, N. & Huibregtse, J.M. The -4 phenylalanine is required for substrate ubiquitination catalyzed by HECT ubiquitin ligases. J. Biol. Chem.279, 18935–18943 (2004). ArticleCAS Google Scholar
Ronchi, V.P., Klein, J.M. & Haas, A.L. E6AP/UBE3A ubiquitin ligase harbors two e2~ubiquitin binding sites. J. Biol. Chem. published online, doi:10.1074/jbc.M113.458059 (25 February 2013).
Hochstrasser, M. Lingering mysteries of ubiquitin-chain assembly. Cell124, 27–34 (2006). Article Google Scholar
Woelk, T. et al. Molecular mechanisms of coupled monoubiquitination. Nat. Cell Biol.8, 1246–1254 (2006). ArticleCAS Google Scholar
Serniwka, S.A., & Shaw, G.S. The structure of the UbcH8-ubiquitin complex shows a unique ubiquitin interaction site. Biochemistry48, 12169–12179 (2009). ArticleCAS Google Scholar
Dimasi, N., Flot, D., Dupeux, F. & Marquez, J.A. Expression, crystallization and X-ray data collection from microcrystals of the extracellular domain of the human inhibitory receptor expressed on myeloid cells IREM-1. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.63, 204–208 (2007). ArticleCAS Google Scholar
Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr.43, 186–189 (2010). ArticleCAS Google Scholar
McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Cryst.40, 658–674 (2007). ArticleCAS Google Scholar
CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr.50, 760–763 (1994).
Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr.66, 486–501 (2010). ArticleCAS Google Scholar
Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr.66, 213–221 (2010). ArticleCAS Google Scholar
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr.53, 240–255 (1997). ArticleCAS Google Scholar