Structural basis for RNA recognition in roquin-mediated post-transcriptional gene regulation (original) (raw)
Garneau, N.L., Wilusz, J. & Wilusz, C.J. The highways and byways of mRNA decay. Nat. Rev. Mol. Cell Biol.8, 113–126 (2007). ArticleCAS Google Scholar
Houseley, J. & Tollervey, D. The many pathways of RNA degradation. Cell136, 763–776 (2009). ArticleCAS Google Scholar
Vinuesa, C.G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature435, 452–458 (2005). ArticleCAS Google Scholar
Linterman, M.A. et al. Follicular helper T cells are required for systemic autoimmunity. J. Exp. Med.206, 561–576 (2009). ArticleCAS Google Scholar
Silva, D.G. et al. Anti-islet autoantibodies trigger autoimmune diabetes in the presence of an increased frequency of islet-reactive CD4 T cells. Diabetes60, 2102–2111 (2011). ArticleCAS Google Scholar
Pratama, A. et al. Roquin-2 shares functions with its paralog Roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation. Immunity38, 669–680 (2013). ArticleCAS Google Scholar
Ellyard, J.I. et al. Heterozygosity for Roquinsan leads to angioimmunoblastic T-cell lymphoma-like tumors in mice. Blood120, 812–821 (2012). Article Google Scholar
Bertossi, A. et al. Loss of Roquin induces early death and immune deregulation but not autoimmunity. J. Exp. Med.208, 1749–1756 (2011). ArticleCAS Google Scholar
Vogel, K.U. et al. Roquin paralogs 1 and 2 redundantly repress the Icos and Ox40 costimulator mRNAs and control follicular helper T cell differentiation. Immunity38, 655–668 (2013). ArticleCAS Google Scholar
Athanasopoulos, V. et al. The ROQUIN family of proteins localizes to stress granules via the ROQ domain and binds target mRNAs. FEBS J.277, 2109–2127 (2010). ArticleCAS Google Scholar
Glasmacher, E. et al. Roquin binds inducible costimulator mRNA and effectors of mRNA decay to induce microRNA-independent post-transcriptional repression. Nat. Immunol.11, 725–733 (2010). ArticleCAS Google Scholar
Yu, D. et al. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature450, 299–303 (2007). ArticleCAS Google Scholar
Maruyama, T. et al. Roquin-2 promotes ubiquitin-mediated degradation of ASK1 to regulate stress responses. Sci. Signal.7, ra8 (2014). Article Google Scholar
Leppek, K. et al. Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs. Cell153, 869–881 (2013). ArticleCAS Google Scholar
Clark, K.L., Halay, E.D., Lai, E. & Burley, S.K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature364, 412–420 (1993). ArticleCAS Google Scholar
Ramakrishnan, V., Finch, J.T., Graziano, V., Lee, P.L. & Sweet, R.M. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature362, 219–223 (1993). ArticleCAS Google Scholar
Conte, M.R., Conn, G.L., Brown, T. & Lane, A.N. Conformational properties and thermodynamics of the RNA duplex r(CGCAAAUUUGCG)2: comparison with the DNA analogue d(CGCAAATTTGCG)2 . Nucleic Acids Res.25, 2627–2634 (1997). ArticleCAS Google Scholar
Huang, Y., Weng, X. & Russu, I.M. Enhanced base-pair opening in the adenine tract of a RNA double helix. Biochemistry50, 1857–1863 (2011). ArticleCAS Google Scholar
Günther, S. et al. Bidirectional binding of invariant chain peptides to an MHC class II molecule. Proc. Natl. Acad. Sci. USA107, 22219–22224 (2010). Article Google Scholar
Studier, F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif.41, 207–234 (2005). ArticleCAS Google Scholar
Schlundt, A. et al. Proline-rich sequence recognition: II. Proteomics analysis of Tsg101 ubiquitin-E2-like variant (UEV) interactions. Mol. Cell. Proteomics8, 2474–2486 (2009). ArticleCAS Google Scholar
Strohalm, M., Hassman, M., Kosata, B. & Kodicek, M. mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun. Mass Spectrom.22, 905–908 (2008). Article Google Scholar
Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr.62, 72–82 (2006). Article Google Scholar
Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr.67, 235–242 (2011). ArticleCAS Google Scholar
French, S. & Wilson, K. On the treatment of negative intensity observations. Acta Crystallogr. A34, 517–525 (1978). Article Google Scholar
Panjikar, S., Parthasarathy, V., Lamzin, V.S., Weiss, M.S. & Tucker, P.A. Auto-rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Crystallogr. D Biol. Crystallogr.61, 449–457 (2005). Article Google Scholar
Panjikar, S., Parthasarathy, V., Lamzin, V.S., Weiss, M.S. & Tucker, P.A. On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination. Acta Crystallogr. D Biol. Crystallogr.65, 1089–1097 (2009). ArticleCAS Google Scholar
Sheldrick, G.M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D Biol. Crystallogr.66, 479–485 (2010). ArticleCAS Google Scholar
Hao, Q. ABS: a program to determine absolute configuration and evaluate anomalous scatterer substructure. J. Appl. Crystallogr.37, 498–499 (2004). ArticleCAS Google Scholar
Cowtan, K.D. & Zhang, K.Y. Density modification for macromolecular phase improvement. Prog. Biophys. Mol. Biol.72, 245–270 (1999). ArticleCAS Google Scholar
Morris, R.J. et al. Breaking good resolutions with ARP/wARP. J. Synchrotron Radiat.11, 56–59 (2004). ArticleCAS Google Scholar
Perrakis, A., Harkiolaki, M., Wilson, K.S. & Lamzin, V.S. ARP/wARP and molecular replacement. Acta Crystallogr. D Biol. Crystallogr.57, 1445–1450 (2001). ArticleCAS Google Scholar
Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr.66, 486–501 (2010). ArticleCAS Google Scholar
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr.53, 240–255 (1997). ArticleCAS Google Scholar
Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D Biol. Crystallogr.57, 122–133 (2001). ArticleCAS Google Scholar
Laskowski, R., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr.26, 283–291 (1993). ArticleCAS Google Scholar
Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc.34, 93–158 (1999). ArticleCAS Google Scholar
Farrow, N.A. et al. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry33, 5984–6003 (1994). ArticleCAS Google Scholar
Vranken, W.F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins59, 687–696 (2005). ArticleCAS Google Scholar
Grzesiek, S. & Bax, A. The importance of not saturating H2O in protein NMR: application to sensitivity enhancement and NOE measurements. J. Am. Chem. Soc.115, 12593–12594 (1993). ArticleCAS Google Scholar
Piotto, M., Saudek, V. & Sklenář, V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR2, 661–665 (1992). ArticleCAS Google Scholar
Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res.31, 3406–3415 (2003). ArticleCAS Google Scholar
Petoukhov, M.V. et al. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr.45, 342–350 (2012). ArticleCAS Google Scholar
Hameyer, D. et al. Toxicity of ligand-dependent Cre recombinases and generation of a conditional Cre deleter mouse allowing mosaic recombination in peripheral tissues. Physiol. Genomics31, 32–41 (2007). ArticleCAS Google Scholar