Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport (original) (raw)
References
Nevo, Y. & Nelson, N. The NRAMP family of metal-ion transporters. Biochim. Biophys. Acta1763, 609–620 (2006). ArticleCAS Google Scholar
Montalbetti, N., Simonin, A., Kovacs, G. & Hediger, M.A. Mammalian iron transporters: families SLC11 and SLC40. Mol. Aspects Med.34, 270–287 (2013). ArticleCAS Google Scholar
Cellier, M.F., Bergevin, I., Boyer, E. & Richer, E. Polyphyletic origins of bacterial Nramp transporters. Trends Genet.17, 365–370 (2001). ArticleCAS Google Scholar
Vidal, S.M., Malo, D., Vogan, K., Skamene, E. & Gros, P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell73, 469–485 (1993). ArticleCAS Google Scholar
Illing, A.C., Shawki, A., Cunningham, C.L. & Mackenzie, B. Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. J. Biol. Chem.287, 30485–30496 (2012). ArticleCAS Google Scholar
Vidal, S.M., Pinner, E., Lepage, P., Gauthier, S. & Gros, P. Natural resistance to intracellular infections: Nramp1 encodes a membrane phosphoglycoprotein absent in macrophages from susceptible (Nramp1 D169) mouse strains. J. Immunol.157, 3559–3568 (1996). CASPubMed Google Scholar
Gunshin, H. et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature388, 482–488 (1997). ArticleCAS Google Scholar
Beaumont, C. et al. Two new human DMT1 gene mutations in a patient with microcytic anemia, low ferritinemia, and liver iron overload. Blood107, 4168–4170 (2006). ArticleCAS Google Scholar
Johnson, E.E. & Wessling-Resnick, M. Iron metabolism and the innate immune response to infection. Microbes Infect.14, 207–216 (2012). ArticleCAS Google Scholar
Shawki, A., Knight, P.B., Maliken, B.D., Niespodzany, E.J. & Mackenzie, B.H. H+-coupled divalent metal-ion transporter-1: functional properties, physiological roles and therapeutics. Curr. Top. Membr.70, 169–214 (2012). ArticleCAS Google Scholar
Mackenzie, B., Ujwal, M.L., Chang, M.H., Romero, M.F. & Hediger, M.A. Divalent metal-ion transporter DMT1 mediates both H+ -coupled Fe2+ transport and uncoupled fluxes. Pflugers Arch.451, 544–558 (2006). ArticleCAS Google Scholar
Shawki, A. & Mackenzie, B. Interaction of calcium with the human divalent metal-ion transporter-1. Biochem. Biophys. Res. Commun.393, 471–475 (2010). ArticleCAS Google Scholar
Au, C., Benedetto, A. & Aschner, M. Manganese transport in eukaryotes: the role of DMT1. Neurotoxicology29, 569–576 (2008). ArticleCAS Google Scholar
Bressler, J.P., Olivi, L., Cheong, J.H., Kim, Y. & Bannona, D. Divalent metal transporter 1 in lead and cadmium transport. Ann. NY Acad. Sci.1012, 142–152 (2004). ArticleCAS Google Scholar
Guerinot, M.L. Microbial iron transport. Annu. Rev. Microbiol.48, 743–772 (1994). ArticleCAS Google Scholar
Makui, H. et al. Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol. Microbiol.35, 1065–1078 (2000). ArticleCAS Google Scholar
Czachorowski, M., Lam-Yuk-Tseung, S., Cellier, M. & Gros, P. Transmembrane topology of the mammalian Slc11a2 iron transporter. Biochemistry48, 8422–8434 (2009). ArticleCAS Google Scholar
Yamashita, A., Singh, S.K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporters. Nature437, 215–223 (2005). ArticleCAS Google Scholar
Cellier, M.F. Nramp: from sequence to structure and mechanism of divalent metal import. Curr. Top. Membr.69, 249–293 (2012). ArticleCAS Google Scholar
Cellier, M.F. Nutritional immunity: homology modeling of Nramp metal import. Adv. Exp. Med. Biol.946, 335–351 (2012). ArticleCAS Google Scholar
Geertsma, E.R. & Dutzler, R. A versatile and efficient high-throughput cloning tool for structural biology. Biochemistry50, 3272–3278 (2011). ArticleCAS Google Scholar
Pardon, E. et al. A general protocol for the generation of Nanobodies for structural biology. Nat. Protoc.9, 674–693 (2014). ArticleCAS Google Scholar
Schulze, S., Koster, S., Geldmacher, U., Terwisscha van Scheltinga, A.C. & Kuhlbrandt, W. Structural basis of Na+-independent and cooperative substrate/product antiport in CaiT. Nature467, 233–236 (2010). ArticleCAS Google Scholar
Ressl, S., Terwisscha van Scheltinga, A.C., Vonrhein, C., Ott, V. & Ziegler, C. Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature458, 47–52 (2009). ArticleCAS Google Scholar
Weyand, S. et al. Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science322, 709–713 (2008). ArticleCAS Google Scholar
Faham, S. et al. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science321, 810–814 (2008). ArticleCAS Google Scholar
Gao, X. et al. Structure and mechanism of an amino acid antiporter. Science324, 1565–1568 (2009). ArticleCAS Google Scholar
Fang, Y. et al. Structure of a prokaryotic virtual proton pump at 3.2 Å resolution. Nature460, 1040–1043 (2009). ArticleCAS Google Scholar
Krishnamurthy, H. & Gouaux, E. X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature481, 469–474 (2012). ArticleCAS Google Scholar
Lam-Yuk-Tseung, S., Govoni, G., Forbes, J. & Gros, P. Iron transport by Nramp2/DMT1: pH regulation of transport by 2 histidines in transmembrane domain 6. Blood101, 3699–3707 (2003). ArticleCAS Google Scholar
Edward, R.A., Whittaker, M.M., Whittaker, J.W., Jameson, G.B. & Baker, E.N. Distinct metal environment in Fe-substituted manganese superoxide dismutatse provides a structural basis of metal specificity. J. Am. Chem. Soc.120, 9684–9685 (1998). ArticleCAS Google Scholar
Qi, W. & Cowan, J.A. Structural, mechanistic and coordination chemistry of relevance to the biosynthesis of iron-sulfur and related iron cofactors. Coord. Chem. Rev.255, 688–699 (2011). ArticleCAS Google Scholar
Freisinger, E. & Vasak, M. Cadmium in metallothioneins. Met. Ions. Life Sci.11, 339–371 (2013). ArticleCAS Google Scholar
Hoch, E. et al. Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity. Proc. Natl. Acad. Sci. USA109, 7202–7207 (2012). ArticleCAS Google Scholar
Cellier, M. et al. Nramp defines a family of membrane proteins. Proc. Natl. Acad. Sci. USA92, 10089–10093 (1995). ArticleCAS Google Scholar
Courville, P. et al. Solute carrier 11 cation symport requires distinct residues in transmembrane helices 1 and 6. J. Biol. Chem.283, 9651–9658 (2008). ArticleCAS Google Scholar
Haemig, H.A. & Brooker, R.J. Importance of conserved acidic residues in mntH, the Nramp homolog of Escherichia coli. J. Membr. Biol.201, 97–107 (2004). ArticleCAS Google Scholar
Haemig, H.A., Moen, P.J. & Brooker, R.J. Evidence that highly conserved residues of transmembrane segment 6 of Escherichia coli MntH are important for transport activity. Biochemistry49, 4662–4671 (2010). ArticleCAS Google Scholar
Xu, H., Jin, J., DeFelice, L.J., Andrews, N.C. & Clapham, D.E. A spontaneous, recurrent mutation in divalent metal transporter-1 exposes a calcium entry pathway. PLoS Biol.2, E50 (2004). Article Google Scholar
Iolascon, A. & De Falco, L. Mutations in the gene encoding DMT1: clinical presentation and treatment. Semin. Hematol.46, 358–370 (2009). ArticleCAS Google Scholar
Courville, P., Chaloupka, R. & Cellier, M.F. Recent progress in structure-function analyses of Nramp proton-dependent metal-ion transporters. Biochem. Cell Biol.84, 960–978 (2006). ArticleCAS Google Scholar
Forrest, L.R. et al. Mechanism for alternating access in neurotransmitter transporters. Proc. Natl. Acad. Sci. USA105, 10338–10343 (2008). ArticleCAS Google Scholar
Casadaban, M.J. & Cohen, S.N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J. Mol. Biol.138, 179–207 (1980). ArticleCAS Google Scholar
Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure14, 673–681 2006). ArticleCAS Google Scholar
Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol.229, 105–124 (1993). ArticleCAS Google Scholar
Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr.26, 795–800 (1993). ArticleCAS Google Scholar
Collaborative Computational Project, Number 4. The CCP4 Suite: programs for X-ray crystallography. Acta Crystallogr. D Biol. Crystallogr.50, 760–763 (1994).
Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr.58, 1772–1779 (2002). Article Google Scholar
Pape, T. & Schneider, T.R. HKL2MAP: a graphical user interface for phasing with SHELX programs. J. Appl. Crystallogr.37, 843–844 (2004). ArticleCAS Google Scholar
De La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol.276, 472–494 (1997). ArticleCAS Google Scholar
Cowtan, K. dm: an automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newslett. Protein Crystallogr.31, 34–38 (1994). Google Scholar
Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991). Article Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.60, 2126–2132 (2004). Article Google Scholar
Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr.54, 905–921 (1998). Article Google Scholar
Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr.58, 1948–1954 (2002). Article Google Scholar
McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr.40, 658–674 (2007). ArticleCAS Google Scholar
Geertsma, E.R., Nik Mahmood, N.A., Schuurman-Wolters, G.K. & Poolman, B. Membrane reconstitution of ABC transporters and assays of translocator function. Nat. Protoc.3, 256–266 (2008). ArticleCAS Google Scholar
Keller, S. et al. High-precision isothermal titration calorimetry with automated peak-shape analysis. Anal. Chem.84, 5066–5073 (2012). ArticleCAS Google Scholar
Lorenz, C., Pusch, M. & Jentsch, T.J. Heteromultimeric CLC chloride channels with novel properties. Proc. Natl. Acad. Sci. USA93, 13362–13366 (1996). ArticleCAS Google Scholar