Atomic structure of the Y complex of the nuclear pore (original) (raw)
Hetzer, M.W. & Wente, S.R. Border control at the nucleus: biogenesis and organization of the nuclear membrane and pore complexes. Dev. Cell17, 606–616 (2009). ArticleCASPubMedPubMed Central Google Scholar
Strambio-De-Castillia, C., Niepel, M. & Rout, M.P. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat. Rev. Mol. Cell Biol.11, 490–501 (2010). ArticleCASPubMed Google Scholar
Brohawn, S.G., Partridge, J.R., Whittle, J.R.R. & Schwartz, T.U. The nuclear pore complex has entered the atomic age. Structure17, 1156–1168 (2009). ArticleCASPubMedPubMed Central Google Scholar
Reichelt, R. et al. Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J. Cell Biol.110, 883–894 (1990). ArticleCASPubMed Google Scholar
Yang, Q., Rout, M.P. & Akey, C.W. Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Mol. Cell1, 223–234 (1998). ArticleCASPubMed Google Scholar
Rout, M.P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol.148, 635–651 (2000). ArticleCASPubMedPubMed Central Google Scholar
Walther, T.C. et al. The conserved Nup107–160 complex is critical for nuclear pore complex assembly. Cell113, 195–206 (2003). ArticleCASPubMed Google Scholar
Harel, A. et al. Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol. Cell11, 853–864 (2003). ArticleCASPubMed Google Scholar
Lutzmann, M., Kunze, R., Buerer, A., Aebi, U. & Hurt, E. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J.21, 387–397 (2002). ArticleCASPubMedPubMed Central Google Scholar
Belgareh, N. et al. An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J. Cell Biol.154, 1147–1160 (2001). ArticleCASPubMedPubMed Central Google Scholar
Neumann, N., Lundin, D. & Poole, A.M. Comparative genomic evidence for a complete nuclear pore complex in the last eukaryotic common ancestor. PLoS ONE5, e13241 (2010). ArticlePubMedPubMed Central Google Scholar
Vollmer, B. & Antonin, W. The diverse roles of the Nup93/Nic96 complex proteins: structural scaffolds of the nuclear pore complex with additional cellular functions. Biol. Chem.395, 515–528 (2014). ArticleCASPubMed Google Scholar
Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature450, 695–701 (2007). ArticleCASPubMed Google Scholar
Bui, K.H. et al. Integrated structural analysis of the human nuclear pore complex scaffold. Cell155, 1233–1243 (2013). ArticleCASPubMed Google Scholar
Berke, I.C., Boehmer, T., Blobel, G. & Schwartz, T.U. Structural and functional analysis of Nup133 domains reveals modular building blocks of the nuclear pore complex. J. Cell Biol.167, 591–597 (2004). ArticleCASPubMedPubMed Central Google Scholar
Boehmer, T., Jeudy, S., Berke, I.C. & Schwartz, T.U. Structural and functional studies of Nup107/Nup133 interaction and its implications for the architecture of the nuclear pore complex. Mol. Cell30, 721–731 (2008). ArticleCASPubMedPubMed Central Google Scholar
Brohawn, S.G., Leksa, N.C., Spear, E.D., Rajashankar, K.R. & Schwartz, T.U. Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Science322, 1369–1373 (2008). ArticleCASPubMedPubMed Central Google Scholar
Brohawn, S.G. & Schwartz, T.U. Molecular architecture of the Nup84–Nup145C–Sec13 edge element in the nuclear pore complex lattice. Nat. Struct. Mol. Biol.16, 1173–1177 (2009). ArticleCASPubMedPubMed Central Google Scholar
Leksa, N.C., Brohawn, S.G. & Schwartz, T.U. The structure of the scaffold nucleoporin Nup120 reveals a new and unexpected domain architecture. Structure17, 1082–1091 (2009). ArticleCASPubMedPubMed Central Google Scholar
Whittle, J.R.R. & Schwartz, T.U. Architectural nucleoporins Nup157/170 and Nup133 are structurally related and descend from a second ancestral element. J. Biol. Chem.284, 28442–28452 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bilokapic, S. & Schwartz, T.U. Molecular basis for Nup37 and ELY5/ELYS recruitment to the nuclear pore complex. Proc. Natl. Acad. Sci. USA109, 15241–15246 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hsia, K.-C., Stavropoulos, P., Blobel, G. & Hoelz, A. Architecture of a coat for the nuclear pore membrane. Cell131, 1313–1326 (2007). ArticleCASPubMedPubMed Central Google Scholar
Debler, E.W. et al. A fence-like coat for the nuclear pore membrane. Mol. Cell32, 815–826 (2008). ArticleCASPubMed Google Scholar
Nagy, V. et al. Structure of a trimeric nucleoporin complex reveals alternate oligomerization states. Proc. Natl. Acad. Sci. USA106, 17693–17698 (2009). ArticleCASPubMedPubMed Central Google Scholar
Seo, H.-S. et al. Structural and functional analysis of Nup120 suggests ring formation of the Nup84 complex. Proc. Natl. Acad. Sci. USA106, 14281–14286 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sampathkumar, P. et al. Structure of the C-terminal domain of Saccharomyces cerevisiae Nup133, a component of the nuclear pore complex. Proteins79, 1672–1677 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fernandez-Martinez, J. et al. Structure-function mapping of a heptameric module in the nuclear pore complex. J. Cell Biol.196, 419–434 (2012). ArticleCASPubMedPubMed Central Google Scholar
Whittle, J.R.R. & Schwartz, T.U. Structure of the Sec13-Sec16 edge element, a template for assembly of the COPII vesicle coat. J. Cell Biol.190, 347–361 (2010). ArticleCASPubMedPubMed Central Google Scholar
Thierbach, K. et al. Protein interfaces of the conserved Nup84 complex from Chaetomium thermophilum shown by crosslinking mass spectrometry and electron microscopy. Structure21, 1672–1682 (2013). ArticleCASPubMed Google Scholar
Bar-Peled, L. et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science340, 1100–1106 (2013). ArticleCASPubMedPubMed Central Google Scholar
Algret, R. et al. Molecular architecture and function of the SEA complex, a modulator of the TORC1 pathway. Mol. Cell. Proteomics13, 2855–2870 (2014). ArticleCASPubMedPubMed Central Google Scholar
Siniossoglou, S. et al. A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell84, 265–275 (1996). ArticleCASPubMed Google Scholar
Kim, S.J. et al. Integrative structure-function mapping of the nucleoporin Nup133 suggests a conserved mechanism for membrane anchoring of the nuclear pore complex. Mol. Cell. Proteomics13, 2911–2926 (2014). ArticleCASPubMedPubMed Central Google Scholar
Liu, X., Mitchell, J.M., Wozniak, R.W., Blobel, G. & Fan, J. Structural evolution of the membrane-coating module of the nuclear pore complex. Proc. Natl. Acad. Sci. USA109, 16498–16503 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kampmann, M. & Blobel, G. Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex. Nat. Struct. Mol. Biol.16, 782–788 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cook, A., Bono, F., Jinek, M. & Conti, E. Structural biology of nucleocytoplasmic transport. Annu. Rev. Biochem.76, 647–671 (2007). ArticleCASPubMed Google Scholar
Szymborska, A. et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science341, 655–658 (2013). CASPubMed Google Scholar
Ori, A. et al. Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol. Syst. Biol.9, 648 (2013). ArticleCASPubMedPubMed Central Google Scholar
Cronshaw, J.M., Krutchinsky, A.N., Zhang, W., Chait, B.T. & Matunis, M.J. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol.158, 915–927 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ries, J., Kaplan, C., Platonova, E., Eghlidi, H. & Ewers, H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods9, 582–584 (2012). ArticleCASPubMed Google Scholar
Andersen, K.R., Leksa, N.C. & Schwartz, T.U. Optimized E. coli expression strain LOBSTR eliminates common contaminants from His-tag purification. Proteins81, 1857–1861 (2013). ArticleCASPubMedPubMed Central Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCASPubMed Google Scholar
Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr.66, 213–221 (2010). ArticleCASPubMedPubMed Central Google Scholar
Terwilliger, T.C. et al. phenix.mr_rosetta: molecular replacement and model rebuilding with Phenix and Rosetta. J. Struct. Funct. Genomics13, 81–90 (2012). ArticleCASPubMedPubMed Central Google Scholar
Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr.66, 486–501 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr.66, 12–21 (2010). ArticleCASPubMed Google Scholar
Jeudy, S. & Schwartz, T.U. Crystal structure of nucleoporin Nic96 reveals a novel, intricate helical domain architecture. J. Biol. Chem.282, 34904–34912 (2007). ArticleCASPubMed Google Scholar
Schrader, N. et al. Structural basis of the nic96 subcomplex organization in the nuclear pore channel. Mol. Cell29, 46–55 (2008). ArticleCASPubMed Google Scholar
Kelley, L.A. & Sternberg, M.J.E. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc.4, 363–371 (2009). ArticleCASPubMed Google Scholar
Pettersen, E.F. et al. UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–1612 (2004). ArticleCASPubMed Google Scholar
Ciccarelli, F.D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science311, 1283–1287 (2006). ArticleCASPubMed Google Scholar
Fritz-Laylin, L.K. et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell140, 631–642 (2010). ArticleCASPubMed Google Scholar
Waterhouse, A.M. et al. Jalview Version 2: a multiple sequence alignment editor and analysis workbench. Bioinformatics25, 1189–1191 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gibson, D.G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods6, 343–345 (2009). ArticleCASPubMed Google Scholar