The nuclear pore complex: bridging nuclear transport and gene regulation (original) (raw)
Field, M. C. & Dacks, J. B. First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr. Opin. Cell Biol.21, 4–13 (2009). CASPubMed Google Scholar
Towbin, B. D., Meister, P. & Gasser, S. M. The nuclear envelope — a scaffold for silencing? Curr. Opin. Genet. Dev.19, 180–186 (2009). CASPubMed Google Scholar
Degrasse, J. A. et al. Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol. Cell. Proteomics8, 2119–2130 (2009). Proteomic analyses of NPC-containing fractions from a divergent eukaryote (Trypanosoma brucei) provide conclusive evidence that the general blueprint of NPC architecture was already established in the last common eukaryotic ancestor. CASPubMedPubMed Central Google Scholar
Suntharalingam, M. & Wente, S. R. Peering through the pore: nuclear pore complex structure, assembly, and function. Dev. Cell4, 775–789 (2003). CASPubMed Google Scholar
Elad, N., Maimon, T., Frenkiel-Krispin, D., Lim, R. Y. & Medalia, O. Structural analysis of the nuclear pore complex by integrated approaches. Curr. Opin. Struct. Biol.19, 226–232 (2009). CASPubMed Google Scholar
Alber, F. et al. Determining the architectures of macromolecular assemblies. Nature450, 683–694 (2007). CASPubMed Google Scholar
Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature450, 695–701 (2007). Together with reference 7, this work describes the development of a computational method that combines a diverse set of biophysical and proteomic data to construct a comprehensive medium resolution three-dimensional map describing the relative arrangement of all components of theS. cerevisiaeNPC. CASPubMed Google Scholar
Brohawn, S. G., Partridge, J. R., Whittle, J. R. & Schwartz, T. U. The nuclear pore complex has entered the atomic age. Structure17, 1156–1168 (2009). CASPubMedPubMed Central Google Scholar
Lutzmann, M., Kunze, R., Buerer, A., Aebi, U. & Hurt, E. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J.21, 387–397 (2002). CASPubMedPubMed Central Google Scholar
D'Angelo, M. A., Anderson, D., Richard, E. & Hetzer, M. Nuclear pores form de novo from both sides of the nuclear envelope. Science312, 440–443 (2006). CASPubMed Google Scholar
Makio, T. et al. The nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly. J. Cell Biol.185, 459–473 (2009). CASPubMedPubMed Central Google Scholar
Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol.2, e380 (2004). PubMedPubMed Central Google Scholar
Devos, D. et al. Simple fold composition and modular architecture of the nuclear pore complex. Proc. Natl Acad. Sci. USA103, 2172–2177 (2006). CASPubMedPubMed Central Google Scholar
Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell116, 153–166 (2004). CASPubMed Google Scholar
Köhler, A. & Hurt, E. C. Exporting RNA from the nucleus to the cytoplasm. Nature Rev. Mol. Cell Biol.8, 761–773 (2007). Google Scholar
Stewart, M. Molecular mechanism of the nuclear protein import cycle. Nature Rev. Mol. Cell Biol.8, 195–208 (2007). CAS Google Scholar
Akey, C. W. & Goldfarb, D. S. Protein import through the nuclear pore complex is a multistep process. J. Cell Biol.109, 971–982 (1989). CASPubMed Google Scholar
Nachury, M. V. & Weis, K. The direction of transport through the nuclear pore can be inverted. Proc. Natl Acad. Sci. USA96, 9622–9627 (1999). CASPubMedPubMed Central Google Scholar
Kuersten, S., Ohno, M. & Mattaj, I. W. Nucleocytoplasmic transport: Ran, beta and beyond. Trends Cell Biol.11, 497–503 (2001). CASPubMed Google Scholar
Terry, L. J. & Wente, S. R. Flexible gates: dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport. Eukaryot. Cell8, 1814–1827 (2009). CASPubMedPubMed Central Google Scholar
Radu, A., Moore, M. S. & Blobel, G. The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell81, 215–222 (1995). CASPubMed Google Scholar
Bayliss, R., Littlewood, T. & Stewart, M. Structural basis for the interaction between FxFG nucleoporin repeats and importin-β in nuclear trafficking. Cell102, 99–108 (2000). CASPubMed Google Scholar
Denning, D. P. & Rexach, M. F. Rapid evolution exposes the boundaries of domain structure and function in natively unfolded FG nucleoporins. Mol. Cell. Proteomics6, 272–282 (2007). CASPubMed Google Scholar
Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol.148, 635–651 (2000). CASPubMedPubMed Central Google Scholar
Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T. & Matunis, M. J. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol.158, 915–927 (2002). Mass spectrometry analysis defines the proteome of the mammalian NPC for the first time and paves the way for a more detailed characterization of NPC structure and function. CASPubMedPubMed Central Google Scholar
Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA100, 2450–2455 (2003). CASPubMedPubMed Central Google Scholar
Lim, R. Y. et al. Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc. Natl Acad. Sci. USA103, 9512–9517 (2006). CASPubMedPubMed Central Google Scholar
Patel, S. S., Belmont, B. J., Sante, J. M. & Rexach, M. F. Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell129, 83–96 (2007). CASPubMed Google Scholar
Jovanovic-Talisman, T. et al. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature457, 1023–1027 (2009). CASPubMed Google Scholar
Akey, C. W. Visualization of transport-related configurations of the nuclear pore transporter. Biophys. J.58, 341–355 (1990). CASPubMedPubMed Central Google Scholar
Rexach, M. & Blobel, G. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell83, 683–692 (1995). CASPubMed Google Scholar
Ben-Efraim, I. & Gerace, L. Gradient of increasing affinity of importin β for nucleoporins along the pathway of nuclear import. J. Cell Biol.152, 411–417 (2001). CASPubMedPubMed Central Google Scholar
Strawn, L. A., Shen, T., Shulga, N., Goldfarb, D. S. & Wente, S. R. Minimal nuclear pore complexes define FG repeat domains essential for transport. Naure. Cell Biol.6, 197–206 (2004). CAS Google Scholar
Rout, M. P., Aitchison, J. D., Magnasco, M. O. & Chait, B. T. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol.13, 622–628 (2003). CASPubMed Google Scholar
Peters, R. Translocation through the nuclear pore: Kaps pave the way. Bioessays31, 466–477 (2009). Excellent introductory review describing current nuclear transport models in the light of the latest data obtained by single transporter recording, optical super-resolution microscopy and transport assays on artificial nanopores. CASPubMed Google Scholar
Lim, R. Y. et al. Nanomechanical basis of selective gating by the nuclear pore complex. Science318, 640–643 (2007). CASPubMed Google Scholar
Ribbeck, K. & Gorlich, D. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J.21, 2664–2671 (2002). CASPubMedPubMed Central Google Scholar
Frey, S., Richter, R. P. & Görlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science314, 815–817 (2006). CASPubMed Google Scholar
Frey, S. & Görlich, D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell130, 512–523 (2007). CASPubMed Google Scholar
Mohr, D., Frey, S., Fischer, T., Guttler, T. & Gorlich, D. Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J.28, 2541–2553 (2009). CASPubMedPubMed Central Google Scholar
Ader, C. et al. Amyloid-like interactions within nucleoporin FG hydrogels. Proc. Natl Acad. Sci. USA107, 6281–6285 (2010). CASPubMedPubMed Central Google Scholar
Krishnan, V. V. et al. Intramolecular cohesion of coils mediated by phenylalanine–glycine motifs in the natively unfolded domain of a nucleoporin. PLoS Comput. Biol.4, e1000145 (2008). CASPubMedPubMed Central Google Scholar
Miao, L. & Schulten, K. Transport-related structures and processes of the nuclear pore complex studied through molecular dynamics. Structure17, 449–459 (2009). CASPubMedPubMed Central Google Scholar
Timney, B. et al. Simple kinetic relationships and nonspecific competition govern nuclear import rates in vivo. J. Cell Biol.175, 579–593 (2006). CASPubMedPubMed Central Google Scholar
Zilman, A., Di Talia, S., Chait, B. T., Rout, M. P. & Magnasco, M. O. Efficiency, selectivity, and robustness of nucleocytoplasmic transport. PLoS Comput. Biol.3, e125 (2007). PubMedPubMed Central Google Scholar
Engelhardt, P. & Pusa, K. Nuclear pore complexes: “press-stud” elements of chromosomes in pairing and control. Nature New Biol.240, 163–166 (1972). CASPubMed Google Scholar
Blobel, G. Gene gating: a hypothesis. Proc. Natl Acad. Sci. USA82, 8527–8529 (1985). The first formulation of the hypothesis that NPCs serve as gene-gating organelles that are capable of interacting specifically with transcriptionally active portions of the genome. CASPubMedPubMed Central Google Scholar
Kehlenbach, R. H., Dickmanns, A., Kehlenbach, A., Guan, T. & Gerace, L. A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export. J. Cell Biol.145, 645–657 (1999). CASPubMedPubMed Central Google Scholar
Schmitt, C. et al. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J.18, 4332–4347 (1999). CASPubMedPubMed Central Google Scholar
Stelter, P. et al. Molecular basis for the functional interaction of dynein light chain with the nuclear-pore complex. Nature Cell Biol.9, 788–796 (2007). CASPubMed Google Scholar
Minakhina, S., Myers, R., Druzhinina, M. & Steward, R. Crosstalk between the actin cytoskeleton and Ran-mediated nuclear transport. BMC Cell Biol.6, 32 (2005). PubMedPubMed Central Google Scholar
Hutten, S., Walde, S., Spillner, C., Hauber, J. & Kehlenbach, R. H. The nuclear pore component Nup358 promotes transportin-dependent nuclear import. J. Cell Sci.122, 1100–1110 (2009). CASPubMed Google Scholar
Stewart, M. Ratcheting mRNA out of the nucleus. Mol. Cell25, 327–330 (2007). CASPubMed Google Scholar
Wu, J., Matunis, M. J., Kraemer, D., Blobel, G. & Coutavas, E. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J. Biol. Chem.270, 14209–14213 (1995). CASPubMed Google Scholar
Matunis, M. J., Wu, J. & Blobel, G. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol.140, 499–509 (1998). CASPubMedPubMed Central Google Scholar
Saitoh, N. et al. In situ SUMOylation analysis reveals a modulatory role of RanBP2 in the nuclear rim and PML bodies. Exp. Cell Res.312, 1418–1430 (2006). CASPubMed Google Scholar
Reverter, D. & Lima, C. D. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature435, 687–692 (2005). CASPubMedPubMed Central Google Scholar
Radtke, K., Döhner, K. & Sodeik, B. Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell. Cell. Microbiol8, 387–400 (2006). CASPubMed Google Scholar
Roth, D. M., Moseley, G. W., Glover, D., Pouton, C. W. & Jans, D. A. A microtubule-facilitated nuclear import pathway for cancer regulatory proteins. Traffic8, 673–686 (2007). CASPubMed Google Scholar
Joseph, J. & Dasso, M. The nucleoporin Nup358 associates with and regulates interphase microtubules. FEBS Lett.582, 190–196 (2008). CASPubMed Google Scholar
Cho, K. I. et al. RANBP2 is an allosteric activator of the conventional kinesin-1 motor protein, KIF5B, in a minimal cell-free system. EMBO Rep.10, 480–486 (2009). CASPubMedPubMed Central Google Scholar
Ris, H. Three-dimensional imaging of cell ultrastructure with high resolution, low voltage SEM. Int. Phys. Conf. Ser.98, 657–662 (1989). Google Scholar
Jarnik, M. & Aebi, U. Toward a more complete 3-D structure of the nuclear pore complex. J. Struct. Biol.107, 291–308 (1991). CASPubMed Google Scholar
Ris, H. & Malecki, M. High-resolution field emission scanning electron microscope imaging of internal cell structures after Epon extraction from sections: a new approach to correlative ultrastructural and immunocytochemical studies. J. Struct. Biol.111, 148–157 (1993). CASPubMed Google Scholar
Goldberg, M. W. & Allen, T. D. High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores. J. Cell Biol.119, 1429–1440 (1992). References 68 and 69 were among the first to provide clear structural evidence for the presence of a basket structure anchored to the nucleoplasmic face of the NPC and the existence of interconnecting fibrils spanning the distance between neighbouring nuclear pores, stretching both perpendicularly and in parallel to the nuclear envelope. CASPubMed Google Scholar
Stoffler, D., Goldie, K. N., Feja, B. & Aebi, U. Calcium-mediated structural changes of native nuclear pore complexes monitored by time-lapse atomic force microscopy. J. Mol. Biol.287, 741–752 (1999). CASPubMed Google Scholar
Beck, M., Lucicc´, V., Förster, F., Baumeister, W. & Medalia, O. Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature449, 611–615 (2007). CASPubMed Google Scholar
Kiseleva, E. et al. Yeast nuclear pore complexes have a cytoplasmic ring and internal filaments. J. Struct. Biol.145, 272–288 (2004). CASPubMed Google Scholar
Daneholt, B. A look at messenger RNP moving through the nuclear pore. Cell88, 585–588 (1997). CASPubMed Google Scholar
Kiseleva, E., Goldberg, M. W., Allen, T. D. & Akey, C. W. Active nuclear pore complexes in Chironomus: visualization of transporter configurations related to mRNP export. J. Cell Sci.111, 223–236 (1998). CASPubMed Google Scholar
Soop, T. et al. Nup153 affects entry of messenger and ribosomal ribonucleoproteins into the nuclear basket during export. Mol. Biol. Cell16, 5610–5620 (2005). CASPubMedPubMed Central Google Scholar
Kylberg, K. et al. Exclusion of mRNPs and ribosomal particles from a thin zone beneath the nuclear envelope revealed upon inhibition of transport. Exp. Cell Res.316, 1028–1038 (2009). The nucleocytoplasmic transport of RNPs was examined by EM, revealing the presence of a basket-dependent 'exclusion-zone' lining the entire extent of the nuclear face of the nuclear envelope, which prevents unwanted macromolecules from encroaching on the nuclear transport channel. PubMed Google Scholar
Krull, S. et al. Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J.29, 1659–1673 (2010). RNA interference experiments were combined with EM analyses to show that the basket component TPR is involved in forming NPC-associated heterochromatin exclusion zones along the nuclear surface of the nuclear envelope, thus preventing macromolecular structures from interfering with nuclear transport. CASPubMedPubMed Central Google Scholar
Byrd, D. A. et al. Tpr, a large coiled coil protein whose amino terminus is involved in activation of oncogenic kinases, is localized to the cytoplasmic surface of the nuclear pore complex. J. Cell Biol.127, 1515–1526 (1994). CASPubMed Google Scholar
Kuznetsov, N. V. et al. The evolutionarily conserved single-copy gene for murine Tpr encodes one prevalent isoform in somatic cells and lacks paralogs in higher eukaryotes. Chromosoma111, 236–255 (2002). CASPubMed Google Scholar
Zimowska, G., Aris, J. P. & Paddy, M. R. A Drosophila Tpr protein homolog is localized both in the extrachromosomal channel network and to nuclear pore complexes. J. Cell Sci.110, 927–944 (1997). CASPubMed Google Scholar
Qi, H. et al. Megator, an essential coiled-coil protein that localizes to the putative spindle matrix during mitosis in Drosophila. Mol. Biol. Cell15, 4854–4865 (2004). CASPubMedPubMed Central Google Scholar
Strambio-de-Castillia, C., Blobel, G. & Rout, M. P. Proteins connecting the nuclear pore complex with the nuclear interior. J. Cell Biol.144, 839–855 (1999). CASPubMedPubMed Central Google Scholar
Frosst, P., Guan, T., Subauste, C., Hahn, K. & Gerace, L. Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export. J. Cell Biol.156, 617–630 (2002). CASPubMedPubMed Central Google Scholar
Krull, S., Thyberg, J., Björkroth, B., Rackwitz, H. R. & Cordes, V. C. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol. Biol. Cell15, 4261–4277 (2004). CASPubMedPubMed Central Google Scholar
Cordes, V. C., Reidenbach, S., Rackwitz, H. R. & Franke, W. W. Identification of protein p270/Tpr as a constitutive component of the nuclear pore complex-attached intranuclear filaments. J. Cell Biol.136, 515–529 (1997). CASPubMedPubMed Central Google Scholar
Hase, M. E., Kuznetsov, N. V. & Cordes, V. C. Amino acid substitutions of coiled-coil protein Tpr abrogate anchorage to the nuclear pore complex but not parallel, in-register homodimerization. Mol. Biol. Cell12, 2433–2452 (2001). CASPubMedPubMed Central Google Scholar
Galy, V. et al. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell116, 63–73 (2004). CASPubMed Google Scholar
Zhao, X., Wu, C. Y. & Blobel, G. Mlp-dependent anchorage and stabilization of a desumoylating enzyme is required to prevent clonal lethality. J. Cell Biol.167, 605–611 (2004). CASPubMedPubMed Central Google Scholar
Casolari, J. M., Brown, C. R., Drubin, D. A., Rando, O. J. & Silver, P. A. Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes Dev.19, 1188–1198 (2005). Changes in nuclear organization that follow stimulation ofS. cerevisiaecells by mating pheromone were studied to show that the yeast TPR homologue, Mlp1, has a role in determining nuclear organization in response to a developmental cue. CASPubMedPubMed Central Google Scholar
Niepel, M., Strambio-de-Castillia, C., Fasolo, J., Chait, B. T. & Rout, M. P. The nuclear pore complex-associated protein, Mlp2p, binds to the yeast spindle pole body and promotes its efficient assembly. J. Cell Biol.170, 225–235 (2005). CASPubMedPubMed Central Google Scholar
Vinciguerra, P., Iglesias, N., Camblong, J., Zenklusen, D. & Stutz, F. Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export. EMBO J.24, 813–823 (2005). Chromatin immunoprecipitation, FISH and pulse-chase experiments were used to show that yeast TPR-like proteins help recruit nascent transcripts to the NPC and have a role in coupling mRNA biogenesis with export through the NPC. CASPubMedPubMed Central Google Scholar
Lewis, A., Felberbaum, R. & Hochstrasser, M. A nuclear envelope protein linking nuclear pore basket assembly, SUMO protease regulation, and mRNA surveillance. J. Cell Biol.178, 813–827 (2007). CASPubMedPubMed Central Google Scholar
Palancade, B. et al. Nucleoporins prevent DNA damage accumulation by modulating Ulp1-dependent sumoylation processes. Mol. Biol. Cell18, 2912–2923 (2007). CASPubMedPubMed Central Google Scholar
Xu, X. M. et al. NUCLEAR PORE ANCHOR, the Arabidopsis homolog of Tpr/Mlp1/Mlp2/megator, is involved in mRNA export and SUMO homeostasis and affects diverse aspects of plant development. Plant Cell19, 1537–1548 (2007). CASPubMedPubMed Central Google Scholar
Lee, S. H., Sterling, H., Burlingame, A. & McCormick, F. Tpr directly binds to Mad1 and Mad2 and is important for the Mad1-Mad2-mediated mitotic spindle checkpoint. Genes Dev.22, 2926–2931 (2008). CASPubMedPubMed Central Google Scholar
De Souza, C. P., Hashmi, S. B., Nayak, T., Oakley, B. & Osmani, S. A. Mlp1 acts as a mitotic scaffold to spatially regulate spindle assembly checkpoint proteins in Aspergillus nidulans. Mol. Biol. Cell20, 2146–2159 (2009). CASPubMedPubMed Central Google Scholar
Lince-Faria, M. et al. Spatiotemporal control of mitosis by the conserved spindle matrix protein Megator. J. Cell Biol.184, 647–657 (2009). Megator, theD. melanogasterhomologue of human TPR, is shown here to specifically interact with SAC proteins, thus mediating normal mitotic duration and checkpoint response. CASPubMedPubMed Central Google Scholar
Skruzný, M. et al. An endoribonuclease functionally linked to perinuclear mRNP quality control associates with the nuclear pore complexes. PLoS Biol.7, e8 (2009). PubMed Google Scholar
Tan-Wong, S. M., Wijayatilake, H. D. & Proudfoot, N. J. Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev.23, 2610–2624 (2009). CASPubMedPubMed Central Google Scholar
Ahmed, S. et al. DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery. Nature Cell Biol.12, 111–118 (2010). Identification of specific gene-recuitment sequences, which function as DNA zip codes to recruit inducibleS. cerevisiaegenes from the nucleoplasm to the NPC and are required for full transcriptional activation of a subset of genes involved in adaptation to varying environmental conditions. CASPubMed Google Scholar
Vaquerizas, J. M. et al. Nuclear pore proteins Nup153 and Megator define transcriptionally active regions in the Drosophila genome. PLoS Genet.6, e1000846 (2010). Using chromatin immunoprecipitation combined with microarray hybridization, it was shown that the NPC acts as a global gene regulator inD. melanogasterby interacting with Nup-associated regions of the genome and thereby promoting chromosomal organization and transcriptional control. PubMedPubMed Central Google Scholar
Vinciguerra, P. & Stutz, F. mRNA export: an assembly line from genes to nuclear pores. Curr. Opin. Cell Biol.16, 285–292 (2004). CASPubMed Google Scholar
Skaggs, H. S. et al. HSF1-TPR interaction facilitates export of stress-induced HSP70 mRNA. J. Biol. Chem.282, 33902–33907 (2007). CASPubMed Google Scholar
Fasken, M. B. & Corbett, A. H. Mechanisms of nuclear mRNA quality control. RNA Biol.6, 237–241 (2009). CASPubMed Google Scholar
Akhtar, A. & Gasser, S. M. The nuclear envelope and transcriptional control. Nature Rev. Genet.8, 507–517 (2007). CASPubMed Google Scholar
Chekanova, J. A., Abruzzi, K. C., Rosbash, M. & Belostotsky, D. A. Sus1, Sac3, and Thp1 mediate post-transcriptional tethering of active genes to the nuclear rim as well as to non-nascent mRNP. RNA14, 66–77 (2008). CASPubMedPubMed Central Google Scholar
Schmid, M. & Jensen, T. H. Quality control of mRNP in the nucleus. Chromosoma117, 419–429 (2008). CASPubMed Google Scholar
Schmid, M. & Jensen, T. H. The exosome: a multipurpose RNA-decay machine. Trends Biochem. Sci.33, 501–510 (2008). CASPubMed Google Scholar
Dziembowski, A. et al. Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing. EMBO J.23, 4, 847–856 (2004). Google Scholar
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science326, 289–293 (2009). CASPubMedPubMed Central Google Scholar
Andrulis, E. D., Neiman, A. M., Zappulla, D. C. & Sternglanz, R. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature394, 592–595 (1998). CASPubMed Google Scholar
Kosak, S. T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science296, 158–162 (2002). CASPubMed Google Scholar
Sexton, T., Schober, H., Fraser, P. & Gasser, S. M. Gene regulation through nuclear organization. Nature Struct. Mol. Biol.14, 1049–1055 (2007). CAS Google Scholar
Dilworth, D. J. et al. The mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control. J. Cell Biol.171, 955–965 (2005). Results obtained from proteomics, genomics and functional assays of boundary activity and epigenetic variegation suggest that the NPC plays an active part in chromatin organization by facilitating the transition of chromatin between activity states. CASPubMedPubMed Central Google Scholar
Dieppois, G., Iglesias, N. & Stutz, F. Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol. Cell. Biol.26, 7, 858–870 (2006). Google Scholar
Schmid, M. et al. Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol. Cell21, 379–391 (2006). CASPubMed Google Scholar
Taddei, A. et al. Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature441, 774–778 (2006). CASPubMed Google Scholar
Brickner, D. G. et al. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol.5, e81 (2007). PubMedPubMed Central Google Scholar
Ishii, K., Arib, G., Lin, C., Van Houwe, G. & Laemmli, U. K. Chromatin boundaries in budding yeast: the nuclear pore connection. Cell109, 551–562 (2002). Genetic studies, immunolocalization, live imaging and chromatin immunoprecipitation experiments conducted on chromatin boundary activities identified inS. cerevisiaeprovided the initial evidence that tethering of genomic loci to the NPC can dramatically alter their epigenetic activity. CASPubMed Google Scholar
Brickner, J. H. & Walter, P. Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol.2, e342 (2004). PubMedPubMed Central Google Scholar
Kundu, S., Horn, P. J. & Peterson, C. L. SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev.21, 997–1004 (2007). CASPubMedPubMed Central Google Scholar
Kundu, S. & Peterson, C. L. Dominant role for signal transduction in transcriptional memory of yeast GAL genes. Mol. Cell. Biol.30, 2330–2340 (2010). CASPubMedPubMed Central Google Scholar
Taddei, A. et al. Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature441, 774–778 (2006). CASPubMed Google Scholar
Cabal, G. et al. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature441, 770–773 (2006). CASPubMed Google Scholar
Kurshakova, M. M. et al. SAGA and a novel Drosophila export complex anchor efficient transcription and mRNA export to NPC. EMBO J.26, 4, 956–965 (2007). Google Scholar
Luthra, R. et al. Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J. Biol. Chem.282, 3042–3049 (2007). CASPubMed Google Scholar
Köhler, A., Schneider, M., Cabal, G. G., Nehrbass, U. & Hurt, E. Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export. Nature Cell Biol.10, 707–715 (2008). PubMed Google Scholar
Rouge-maille, M. et al. THO/Sub2p functions to coordinate 3′-end processing with gene-nuclear pore association. Cell135, 308–321 (2008). CAS Google Scholar
Jani, D. et al. Sus1, Cdc31, and the Sac3 CID region form a conserved interaction platform that promotes nuclear pore association and mRNA export. Mol. Cell33, 727–737 (2009). CASPubMedPubMed Central Google Scholar
Klockner, C. et al. Mutational uncoupling of the role of Sus1 in nuclear pore complex targeting of an mRNA export complex and histone H2B deubiquitination. J. Biol. Chem.284, 12049–12056 (2009). PubMedPubMed Central Google Scholar
Ellisdon, A. M., Jani, D., Kohler, A., Hurt, E. & Stewart, M. Structural basis for the interaction between yeast Spt-Ada-Gcn5 acetyltransferase (SAGA) complex components Sgf11 and Sus1. J. Biol. Chem.285, 3850–3856 (2010). CASPubMed Google Scholar
Hutchison, N. & Weintraub, H. Localization of DNAase I-sensitive sequences to specific regions of interphase nuclei. Cell43, 471–482 (1985). CASPubMed Google Scholar
Ragoczy, T., Bender, M. A., Telling, A., Byron, R. & Groudine, M. The locus control region is required for association of the murine β-globin locus with engaged transcription factories during erythroid maturation. Genes Dev.20, 1447–1457 (2006). CASPubMedPubMed Central Google Scholar
Donze, D. & Kamakaka, R. T. Braking the silence: how heterochromatic gene repression is stopped in its tracks. Bioessays24, 344–349 (2002). CASPubMed Google Scholar
Capelson, M. et al. Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell140, 372–383 (2010). CASPubMedPubMed Central Google Scholar
Kalverda, B., Pickersgill, H., Shloma, V. V. & Fornerod, M. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell140, 360–371 (2010). CASPubMed Google Scholar
Therizols, P. et al. Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. J. Cell Biol.172, 189–199 (2006). CASPubMedPubMed Central Google Scholar
Zhao, X. & Blobel, G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl Acad. Sci. USA102, 4777–4782 (2005). CASPubMedPubMed Central Google Scholar
Nagai, S. et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science322, 597–602 (2008). CASPubMedPubMed Central Google Scholar
Ii, T., Mullen, J. R., Slagle, C. E. & Brill, S. J. Stimulation of in vitro sumoylation by Slx5-Slx8: evidence for a functional interaction with the SUMO pathway. DNA Repair6, 1679–1691 (2007). CASPubMedPubMed Central Google Scholar
Oza, P. & Peterson, C. L. Opening the DNA repair toolbox: localization of DNA double strand breaks to the nuclear periphery. Cell Cycle9, 43–49 (2010). CASPubMed Google Scholar
Khadaroo, B. et al. The DNA damage response at eroded telomeres and tethering to the nuclear pore complex. Nature Cell Biol.11, 980–987 (2009). Single-cell analysis was used to show that double-stranded DNA breaks get recruited to the vicinity of the NPC where they can undergo specialized repair in an environment designed to favour chromatin stability. CASPubMed Google Scholar
Hanawalt, P. C. Controlling the efficiency of excision repair. Mutat. Res.485, 3–13 (2001). CASPubMed Google Scholar
Gaillard, H. et al. Genome-wide analysis of factors affecting transcription elongation and DNA repair: a new role for PAF and Ccr4-Not in transcription-coupled repair. PLoS Genet.5, e1000364 (2009). PubMedPubMed Central Google Scholar
Zhang, L., Jones, K. & Gong, F. The molecular basis of chromatin dynamics during nucleotide excision repair. Biochem. Cell Biol.87, 265–272 (2009). CASPubMed Google Scholar
Faza, M. B. et al. Sem1 is a functional component of the nuclear pore complex-associated messenger RNA export machinery. J. Cell Biol.184, 833–846 (2009). CASPubMedPubMed Central Google Scholar
Fernandez-Martinez, J. & Rout, M. P. Nuclear pore complex biogenesis. Curr. Opin. Cell Biol., 21, 603–612 (2009). CASPubMedPubMed Central Google Scholar
Guttinger, S., Laurell, E. & Kutay, U. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nature Rev. Mol. Cell Biol.10, 178–191 (2009). Google Scholar
Iouk, T., Kerscher, O., Scott, R. J., Basrai, M. A. & Wozniak, R. W. The yeast nuclear pore complex functionally interacts with components of the spindle assembly checkpoint. J. Cell Biol.159, 807–819 (2002). CASPubMedPubMed Central Google Scholar
Gillett, E. S., Espelin, C. W. & Sorger, P. K. Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast. J. Cell Biol.164, 535–546 (2004). CASPubMedPubMed Central Google Scholar
Scott, R. J., Lusk, C. P., Dilworth, D. J., Aitchison, J. D. & Wozniak, R. W. Interactions between Mad1p and the nuclear transport machinery in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell16, 4362–4374 (2005). CASPubMedPubMed Central Google Scholar
Scott, R. J., Cairo, L. V., Van de Vosse, D. W. & Wozniak, R. W. The nuclear export factor Xpo1p targets Mad1p to kinetochores in yeast. J. Cell Biol.184, 21–29 (2009). CASPubMedPubMed Central Google Scholar
Katsani, K. R., Karess, R. E., Dostatni, N. & Doye, V. In vivo dynamics of Drosophila nuclear envelope components. Mol. Biol. Cell19, 3652–3666 (2008). CASPubMedPubMed Central Google Scholar
Nakano, H., Funasaka, T., Hashizume, C. & Wong, R. W. Nucleoporin Tpr associates with dynein complex preventing chromosome lagging formation during mitosis. J. Biol. Chem.285, 10841–10849 (2010). CASPubMedPubMed Central Google Scholar
Rao, C. V., Yamada, H. Y., Yao, Y. & Dai, W. Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice. Carcinogenesis30, 1469–1474 (2009). CASPubMedPubMed Central Google Scholar
Pemberton, L. F. & Paschal, B. M. Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic6, 187–198 (2005). CASPubMed Google Scholar
Tran, E. J., Bolger, T. A. & Wente, S. R. SnapShot: nuclear transport. Cell131, 420 (2007). PubMed Google Scholar
Oza, P., Jaspersen, S. L., Miele, A., Dekker, J. & Peterson, C. L. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev.23, 912–927 (2009). CASPubMedPubMed Central Google Scholar
Schober, H., Ferreira, H., Kalck, V., Gehlen, L. R. & Gasser, S. M. Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev.23, 928–938 (2009). CASPubMedPubMed Central Google Scholar
Jaspersen, S. L., Giddings, T. H. & Winey, M. Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p. J. Cell Biol.159, 945–956 (2002). CASPubMedPubMed Central Google Scholar
Ding, X. et al. SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev. Cell12, 863–872 (2007). CASPubMed Google Scholar
Gartenberg, M. R. Life on the edge: telomeres and persistent DNA breaks converge at the nuclear periphery. Genes Dev.23, 1027–1031 (2009). CASPubMedPubMed Central Google Scholar
Mekhail, K., Seebacher, J., Gygi, S. P. & Moazed, D. Role for perinuclear chromosome tethering in maintenance of genome stability. Nature456, 667–670 (2008). CASPubMedPubMed Central Google Scholar
Mans, B. J., Anantharaman, V., Aravind, L. & Koonin, E. V. Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle3, 1612–1637 (2004). CASPubMed Google Scholar
Grund, S. E. et al. The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression. J. Cell Biol.182, 897–910 (2008). CASPubMedPubMed Central Google Scholar
Gonzalez-Barrera, S., Garcia-Rubio, M. & Aguilera, A. Transcription and double-strand breaks induce similar mitotic recombination events in Saccharomyces cerevisiae. Genetics162, 603–614 (2002). CASPubMedPubMed Central Google Scholar
Jimeno, S., Rondon, A. G., Luna, R. & Aguilera, A. The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J.21, 3526–3535 (2002). CASPubMedPubMed Central Google Scholar
Gaillard, H., Wellinger, R. E. & Aguilera, A. A new connection of mRNP biogenesis and export with transcription-coupled repair. Nucleic Acids Res.35, 3893–3906 (2007). CASPubMedPubMed Central Google Scholar
García-Rubio, M. et al. Different physiological relevance of yeast THO/TREX subunits in gene expression and genome integrity. Mol. Genet. Genomics279, 123–132 (2008). PubMed Google Scholar
Schneider, M., Noegel, A. A. & Karakesisoglou, I. KASH-domain proteins and the cytoskeletal landscapes of the nuclear envelope. Biochem. Soc. Trans.36, 1368–1372 (2008). CASPubMed Google Scholar
Kelly, S. M. & Corbett, A. H. Messenger RNA export from the nucleus: a series of molecular wardrobe changes. Traffic10, 1199–1208 (2009). CASPubMedPubMed Central Google Scholar
Luna, R., Gaillard, H., Gonzalez-Aguilera, C. & Aguilera, A. Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma117, 319–331 (2008). CASPubMed Google Scholar
Hacker, S. & Krebber, H. Differential export requirements for shuttling serine/arginine-type mRNA-binding proteins. J. Biol. Chem.279, 5049–5052 (2004). PubMed Google Scholar
Iglesias, N. & Stutz, F. Regulation of mRNP dynamics along the export pathway. FEBS Lett.582, 1987–1996 (2008). CASPubMed Google Scholar