Linker Nups connect the nuclear pore complex inner ring with the outer ring and transport channel (original) (raw)
Ptak, C., Aitchison, J.D. & Wozniak, R.W. The multifunctional nuclear pore complex: a platform for controlling gene expression. Curr. Opin. Cell Biol.28, 46–53 (2014). ArticleCAS Google Scholar
Bilokapic, S. & Schwartz, T.U. 3D ultrastructure of the nuclear pore complex. Curr. Opin. Cell Biol.24, 86–91 (2012). ArticleCAS Google Scholar
Wente, S.R. & Rout, M.P. The nuclear pore complex and nuclear transport. Cold Spring Harb. Perspect. Biol.2, a000562 (2010). ArticleCAS Google Scholar
Fahrenkrog, B. & Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat. Rev. Mol. Cell Biol.4, 757–766 (2003). ArticleCAS Google Scholar
Frey, S., Richter, R.P. & Gorlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science314, 815–817 (2006). ArticleCAS Google Scholar
Lim, R.Y. et al. Nanomechanical basis of selective gating by the nuclear pore complex. Science318, 640–643 (2007). ArticleCAS Google Scholar
Rexach, M. & Blobel, G. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell83, 683–692 (1995). ArticleCAS Google Scholar
Schwartz, T.U. Modularity within the architecture of the nuclear pore complex. Curr. Opin. Struct. Biol.15, 221–226 (2005). ArticleCAS Google Scholar
Siniossoglou, S. et al. A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell84, 265–275 (1996). ArticleCAS Google Scholar
Walther, T.C. et al. The conserved Nup107–160 complex is critical for nuclear pore complex assembly. Cell113, 195–206 (2003). ArticleCAS Google Scholar
Stuwe, T. et al. Nuclear pores: architecture of the nuclear pore complex coat. Science347, 1148–1152 (2015). ArticleCAS Google Scholar
Kelley, K., Knockenhauer, K.E., Kabachinski, G. & Schwartz, T.U. Atomic structure of the Y complex of the nuclear pore. Nat. Struct. Mol. Biol.22, 425–431 (2015). ArticleCAS Google Scholar
Bui, K.H. et al. Integrated structural analysis of the human nuclear pore complex scaffold. Cell155, 1233–1243 (2013). ArticleCAS Google Scholar
Belgareh, N. et al. Functional characterization of a Nup159p-containing nuclear pore subcomplex. Mol. Biol. Cell9, 3475–3492 (1998). ArticleCAS Google Scholar
Grandi, P. et al. A novel nuclear pore protein Nup82p which specifically binds to a fraction of Nsp1p. J. Cell Biol.130, 1263–1273 (1995). ArticleCAS Google Scholar
Tieg, B. & Krebber, H. Dbp5: from nuclear export to translation. Biochim. Biophys. Acta1829, 791–798 (2013). ArticleCAS Google Scholar
Weirich, C.S., Erzberger, J.P., Berger, J.M. & Weis, K. The N-terminal domain of Nup159 forms a beta-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol. Cell16, 749–760 (2004). ArticleCAS Google Scholar
Gaik, M. et al. Structural basis for assembly and function of the Nup82 complex in the nuclear pore scaffold. J. Cell Biol.208, 283–297 (2015). Article Google Scholar
Stelter, P. et al. Molecular basis for the functional interaction of dynein light chain with the nuclear-pore complex. Nat. Cell Biol.9, 788–796 (2007). ArticleCAS Google Scholar
Grandi, P., Schlaich, N., Tekotte, H. & Hurt, E.C. Functional interaction of Nic96p with a core nucleoporin complex consisting of Nsp1p, Nup49p and a novel protein Nup57p. EMBO J.14, 76–87 (1995). ArticleCAS Google Scholar
Amlacher, S. et al. Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell146, 277–289 (2011). ArticleCAS Google Scholar
Vollmer, B. & Antonin, W. The diverse roles of the Nup93/Nic96 complex proteins - structural scaffolds of the nuclear pore complex with additional cellular functions. Biol. Chem.395, 515–528 (2014). ArticleCAS Google Scholar
Eisenhardt, N., Redolfi, J. & Antonin, W. Interaction of Nup53 with Ndc1 and Nup155 is required for nuclear pore complex assembly. J. Cell Sci.127, 908–921 (2014). ArticleCAS Google Scholar
Mansfeld, J. et al. The conserved transmembrane nucleoporin NDC1 is required for nuclear pore complex assembly in vertebrate cells. Mol. Cell22, 93–103 (2006). ArticleCAS Google Scholar
Onischenko, E., Stanton, L.H., Madrid, A.S., Kieselbach, T. & Weis, K. Role of the Ndc1 interaction network in yeast nuclear pore complex assembly and maintenance. J. Cell Biol.185, 475–491 (2009). ArticleCAS Google Scholar
Rothballer, A. & Kutay, U. Poring over pores: nuclear pore complex insertion into the nuclear envelope. Trends Biochem. Sci.38, 292–301 (2013). ArticleCAS Google Scholar
Solmaz, S.R., Chauhan, R., Blobel, G. & Melcak, I. Molecular architecture of the transport channel of the nuclear pore complex. Cell147, 590–602 (2011). ArticleCAS Google Scholar
Chatel, G., Desai, S.H., Mattheyses, A.L., Powers, M.A. & Fahrenkrog, B. Domain topology of nucleoporin Nup98 within the nuclear pore complex. J. Struct. Biol.177, 81–89 (2012). ArticleCAS Google Scholar
Fabre, E., Boelens, W.C., Wimmer, C., Mattaj, I.W. & Hurt, E.C. Nup145p is required for nuclear export of mRNA and binds homopolymeric RNA in vitro via a novel conserved motif. Cell78, 275–289 (1994). ArticleCAS Google Scholar
Fontoura, B.M., Blobel, G. & Matunis, M.J. A conserved biogenesis pathway for nucleoporins: proteolytic processing of a 186-kilodalton precursor generates Nup98 and the novel nucleoporin, Nup96. J. Cell Biol.144, 1097–1112 (1999). ArticleCAS Google Scholar
Rosenblum, J.S. & Blobel, G. Autoproteolysis in nucleoporin biogenesis. Proc. Natl. Acad. Sci. USA96, 11370–11375 (1999). ArticleCAS Google Scholar
Teixeira, M.T. et al. Two functionally distinct domains generated by in vivo cleavage of Nup145p: a novel biogenesis pathway for nucleoporins. EMBO J.16, 5086–5097 (1997). ArticleCAS Google Scholar
Stelter, P. et al. Monitoring spatiotemporal biogenesis of macromolecular assemblies by pulse-chase epitope labeling. Mol. Cell47, 788–796 (2012). ArticleCAS Google Scholar
Wente, S.R. & Blobel, G. NUP145 encodes a novel yeast glycine-leucine-phenylalanine-glycine (GLFG) nucleoporin required for nuclear envelope structure. J. Cell Biol.125, 955–969 (1994). ArticleCAS Google Scholar
Wente, S.R., Rout, M.P. & Blobel, G. A new family of yeast nuclear pore complex proteins. J. Cell Biol.119, 705–723 (1992). ArticleCAS Google Scholar
Bailer, S.M. et al. Nup116p and nup100p are interchangeable through a conserved motif which constitutes a docking site for the mRNA transport factor gle2p. EMBO J.17, 1107–1119 (1998). ArticleCAS Google Scholar
Bailer, S.M. et al. Nup116p associates with the Nup82p-Nsp1p-Nup159p nucleoporin complex. J. Biol. Chem.275, 23540–23548 (2000). ArticleCAS Google Scholar
Ho, A.K. et al. Assembly and preferential localization of Nup116p on the cytoplasmic face of the nuclear pore complex by interaction with Nup82p. Mol. Cell. Biol.20, 5736–5748 (2000). ArticleCAS Google Scholar
Yoshida, K., Seo, H.S., Debler, E.W., Blobel, G. & Hoelz, A. Structural and functional analysis of an essential nucleoporin heterotrimer on the cytoplasmic face of the nuclear pore complex. Proc. Natl. Acad. Sci. USA108, 16571–16576 (2011). ArticleCAS Google Scholar
Stuwe, T., von Borzyskowski, L.S., Davenport, A.M. & Hoelz, A. Molecular basis for the anchoring of proto-oncoprotein Nup98 to the cytoplasmic face of the nuclear pore complex. J. Mol. Biol.419, 330–346 (2012). ArticleCAS Google Scholar
Lutzmann, M. et al. Reconstitution of Nup157 and Nup145N into the Nup84 complex. J. Biol. Chem.280, 18442–18451 (2005). ArticleCAS Google Scholar
Laurell, E. et al. Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell144, 539–550 (2011). ArticleCAS Google Scholar
Schlaich, N.L., Haner, M., Lustig, A., Aebi, U. & Hurt, E.C. In vitro reconstitution of a heterotrimeric nucleoporin complex consisting of recombinant Nsp1p, Nup49p, and Nup57p. Mol. Biol. Cell8, 33–46 (1997). ArticleCAS Google Scholar
Ulrich, A., Partridge, J.R. & Schwartz, T.U. The stoichiometry of the nucleoporin 62 subcomplex of the nuclear pore in solution. Mol. Biol. Cell25, 1484–1492 (2014). Article Google Scholar
Schlaich, N.L., Häner, M., Lustig, A., Aebi, U. & Hurt, E.C. In vitro reconstitution of a heterotrimeric nucleoporin complex consisting of recombinant Nsp1p, Nup49p and Nup57p. Mol. Biol. Cell8, 33–46 (1997). ArticleCAS Google Scholar
Bailer, S.M., Balduf, C. & Hurt, E. The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport. Mol. Cell. Biol.21, 7944–7955 (2001). ArticleCAS Google Scholar
Andersen, K.R. et al. Scaffold nucleoporins Nup188 and Nup192 share structural and functional properties with nuclear transport receptors. eLife2, e00745 (2013). Article Google Scholar
Schrader, N. et al. Structural basis of the nic96 subcomplex organization in the nuclear pore channel. Mol. Cell29, 46–55 (2008). ArticleCAS Google Scholar
Rabut, G., Doye, V. & Ellenberg, J. Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat. Cell Biol.6, 1114–1121 (2004). ArticleCAS Google Scholar
Rout, M.P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol.148, 635–651 (2000). ArticleCAS Google Scholar
Bock, T. et al. An integrated approach for genome annotation of the eukaryotic thermophile Chaetomium thermophilum. Nucleic Acids Res.42, 13525–13533 (2014). ArticleCAS Google Scholar
Nissan, T.A., Bassler, J., Petfalski, E., Tollervey, D. & Hurt, E. 60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. EMBO J.21, 5539–5547 (2002). ArticleCAS Google Scholar
Thierbach, K. et al. Protein interfaces of the conserved Nup84 complex from Chaetomium thermophilum shown by crosslinking mass spectrometry and electron microscopy. StruCture21, 1672–1682 (2013). ArticleCAS Google Scholar
Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M. & Barton, G.J. Jalview Version 2: a multiple sequence alignment editor and analysis workbench. Bioinformatics25, 1189–1191 (2009). ArticleCAS Google Scholar