Shape-specific recognition in the structure of the Vts1p SAM domain with RNA (original) (raw)

References

  1. Qiao, F. & Bowie, J.U. The many faces of SAM. Sci. STKE [online] 2005, re7 (2005) (10.1126/stke.2862005re7).
    Article Google Scholar
  2. Hall, T.M. SAM breaks its stereotype. Nat. Struct. Biol. 10, 677–679 (2003).
    Article CAS Google Scholar
  3. Sharrocks, A.D. The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol. 2, 827–837 (2001).
    Article CAS Google Scholar
  4. Jousset, C. et al. A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFR beta oncoprotein. EMBO J. 16, 69–82 (1997).
    Article CAS Google Scholar
  5. Yu, X., West, S.C. & Egelman, E.H. Structure and subunit composition of the RuvAB-Holliday junction complex. J. Mol. Biol. 266, 217–222 (1997).
    Article CAS Google Scholar
  6. Aviv, T. et al. The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Nat. Struct. Biol. 10, 614–621 (2003).
    Article CAS Google Scholar
  7. Green, J.B., Gardner, C.D., Wharton, R.P. & Aggarwal, A.K. RNA recognition via the SAM domain of Smaug. Mol. Cell 11, 1537–1548 (2003).
    Article CAS Google Scholar
  8. Dilcher, M., Kohler, B. & von Mollard, G.F. Genetic interactions with the yeast Q-SNARE VTI1 reveal novel functions for the R-SNARE YKT6. J. Biol. Chem. 276, 34537–34544 (2001).
    Article CAS Google Scholar
  9. Smibert, C.A., Wilson, J.E., Kerr, K. & Macdonald, P.M. smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo. Genes Dev. 10, 2600–2609 (1996).
    Article CAS Google Scholar
  10. Dahanukar, A., Walker, J.A. & Wharton, R.P. Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Mol. Cell 4, 209–218 (1999).
    Article CAS Google Scholar
  11. Nelson, M.R., Leidal, A.M. & Smibert, C.A. Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression. EMBO J. 23, 150–159 (2004).
    Article CAS Google Scholar
  12. Semotok, J.L. et al. Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo. Curr. Biol. 15, 284–294 (2005).
    Article CAS Google Scholar
  13. Tucker, M., Staples, R.R., Valencia-Sanchez, M.A., Muhlrad, D. & Parker, R. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 21, 1427–1436 (2002).
    Article CAS Google Scholar
  14. Chen, J., Chiang, Y.C. & Denis, C.L. CCR4, a 3′-5′ poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J. 21, 1414–1426 (2002).
    Article CAS Google Scholar
  15. Moore, P.B. Structural motifs in RNA. Annu. Rev. Biochem. 68, 287–300 (1999).
    Article CAS Google Scholar
  16. Hofacker, I.L. Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429–3431 (2003).
    Article CAS Google Scholar
  17. Qiao, F. et al. Derepression by depolymerization; structural insights into the regulation of Yan by Mae. Cell 118, 163–173 (2004).
    Article CAS Google Scholar
  18. Thanos, C.D., Goodwill, K.E. & Bowie, J.U. Oligomeric structure of the human EphB2 receptor SAM domain. Science 283, 833–836 (1999).
    Article CAS Google Scholar
  19. Stefl, R., Skrisovska, L. & Allain, F.H. RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep. 6, 33–38 (2005).
    Article CAS Google Scholar
  20. Wu, H., Henras, A., Chanfreau, G. & Feigon, J. Structural basis for recognition of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase III. Proc. Natl. Acad. Sci. USA 101, 8307–8312 (2004).
    Article CAS Google Scholar
  21. Lu, D., Searles, M.A. & Klug, A. Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition. Nature 426, 96–100 (2003).
    Article CAS Google Scholar
  22. Williamson, J.R. Induced fit in RNA-protein recognition. Nat. Struct. Biol. 7, 834–837 (2000).
    Article CAS Google Scholar
  23. Maris, C., Dominguez, C. & Allain, F.H. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J. 272, 2118–2131 (2005).
    Article CAS Google Scholar
  24. DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).
    Article CAS Google Scholar
  25. Collart, M.A. & Timmers, H.T. The eukaryotic Ccr4-not complex: a regulatory platform integrating mRNA metabolism with cellular signaling pathways? Prog. Nucleic Acid Res. Mol. Biol. 77, 289–322 (2004).
    Article CAS Google Scholar
  26. Denis, C.L. & Chen, J. The CCR4-NOT complex plays diverse roles in mRNA metabolism. Prog. Nucleic Acid Res. Mol. Biol. 73, 221–250 (2003).
    Article CAS Google Scholar
  27. Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 34, 93–158 (1999).
    Article CAS Google Scholar
  28. Bax, A., Kontaxis, G. & Tjandra, N. Dipolar couplings in macromolecular structure determination. Methods Enzymol. 339, 127–174 (2001).
    Article CAS Google Scholar
  29. Peterson, R.D., Theimer, C.A., Wu, H. & Feigon, J. New applications of 2D filtered/edited NOESY for assignment and structure elucidation of RNA and RNA-protein complexes. J. Biomol. NMR 28, 59–67 (2004).
    Article CAS Google Scholar
  30. Zwahlen, C. et al. Method for measurement of intermolecular NOEs by multinuclear NMR spectrocopy:application to a bacteriophage lambda N-peptide/boxB RNA complex. J. Am. Chem. Soc. 119, 6711–6721 (1997).
    Article CAS Google Scholar
  31. Herrmann, T., Guntert, P. & Wuthrich, K. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227 (2002).
    Article CAS Google Scholar
  32. Guntert, P., Mumenthaler, C. & Wuthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997).
    Article CAS Google Scholar
  33. Case, D.A. et al. AMBER Version 7 (University of California, San Francisco, USA, 2002).
    Google Scholar
  34. Cornell, W.D. et al. A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995).
    Article CAS Google Scholar
  35. Bashford, D. & Case, D. Generalized born models of macromolecular solvation effects. Annu. Rev. Phys. Chem. 51, 129–152 (2000).
    Article CAS Google Scholar
  36. Padrta, P., Stefl, R., Kralik, L., Zidek, L. & Sklenar, V. Refinement of d(GCGAAGC) hairpin structure using one- and two-bond residual dipolar couplings. J. Biomol. NMR 24, 1–14 (2002).
    Article CAS Google Scholar
  37. Tsui, V., Zhu, L., Huang, T.H., Wright, P.E. & Case, D.A. Assessment of zinc finger orientations by residual dipolar coupling constants. J. Biomol. NMR 16, 9–21 (2000).
    Article CAS Google Scholar
  38. Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).
    Article CAS Google Scholar
  39. Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 29–32, 51–55 (1996).
    Article Google Scholar
  40. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, USA, 2002).
    Google Scholar
  41. Lee, A., Henras, A.K. & Chanfreau, G. Multiple RNA surveillance pathways limit aberrant expression of iron uptake mRNAs and prevent iron toxicity in S. cerevisiae. Mol. Cell 19, 39–51 (2005).
    Article CAS Google Scholar
  42. Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E.S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254 (2003).
    Article CAS Google Scholar
  43. Duchow, H.K., Brechbiel, J.L., Chatterjee, S. & Gavis, E.R. The nanos translational control element represses translation in somatic cells by a Bearded box-like motif. Dev. Biol. 282, 207–217 (2005).
    Article CAS Google Scholar
  44. Mulder, F.A., Schipper, D., Bott, R. & Boelens, R. Altered flexibility in the substrate-binding site of related native and engineered high-alkaline _Bacillus subtilis_ins. J. Mol. Biol. 292, 111–123 (1999).
    Article CAS Google Scholar
  45. Ariyoshi, M., Nishino, T., Iwasaki, H., Shinagawa, H. & Morikawa, K. Crystal structure of the holliday junction DNA in complex with a single RuvA tetramer. Proc. Natl. Acad. Sci. USA 97, 8257–8262 (2000).
    Article CAS Google Scholar

Download references