Shape-specific recognition in the structure of the Vts1p SAM domain with RNA (original) (raw)
References
Qiao, F. & Bowie, J.U. The many faces of SAM. Sci. STKE [online]2005, re7 (2005) (10.1126/stke.2862005re7). Article Google Scholar
Hall, T.M. SAM breaks its stereotype. Nat. Struct. Biol.10, 677–679 (2003). ArticleCAS Google Scholar
Sharrocks, A.D. The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol.2, 827–837 (2001). ArticleCAS Google Scholar
Jousset, C. et al. A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFR beta oncoprotein. EMBO J.16, 69–82 (1997). ArticleCAS Google Scholar
Yu, X., West, S.C. & Egelman, E.H. Structure and subunit composition of the RuvAB-Holliday junction complex. J. Mol. Biol.266, 217–222 (1997). ArticleCAS Google Scholar
Aviv, T. et al. The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Nat. Struct. Biol.10, 614–621 (2003). ArticleCAS Google Scholar
Green, J.B., Gardner, C.D., Wharton, R.P. & Aggarwal, A.K. RNA recognition via the SAM domain of Smaug. Mol. Cell11, 1537–1548 (2003). ArticleCAS Google Scholar
Dilcher, M., Kohler, B. & von Mollard, G.F. Genetic interactions with the yeast Q-SNARE VTI1 reveal novel functions for the R-SNARE YKT6. J. Biol. Chem.276, 34537–34544 (2001). ArticleCAS Google Scholar
Smibert, C.A., Wilson, J.E., Kerr, K. & Macdonald, P.M. smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo. Genes Dev.10, 2600–2609 (1996). ArticleCAS Google Scholar
Dahanukar, A., Walker, J.A. & Wharton, R.P. Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Mol. Cell4, 209–218 (1999). ArticleCAS Google Scholar
Nelson, M.R., Leidal, A.M. & Smibert, C.A. Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression. EMBO J.23, 150–159 (2004). ArticleCAS Google Scholar
Semotok, J.L. et al. Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo. Curr. Biol.15, 284–294 (2005). ArticleCAS Google Scholar
Tucker, M., Staples, R.R., Valencia-Sanchez, M.A., Muhlrad, D. & Parker, R. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J.21, 1427–1436 (2002). ArticleCAS Google Scholar
Chen, J., Chiang, Y.C. & Denis, C.L. CCR4, a 3′-5′ poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J.21, 1414–1426 (2002). ArticleCAS Google Scholar
Moore, P.B. Structural motifs in RNA. Annu. Rev. Biochem.68, 287–300 (1999). ArticleCAS Google Scholar
Qiao, F. et al. Derepression by depolymerization; structural insights into the regulation of Yan by Mae. Cell118, 163–173 (2004). ArticleCAS Google Scholar
Thanos, C.D., Goodwill, K.E. & Bowie, J.U. Oligomeric structure of the human EphB2 receptor SAM domain. Science283, 833–836 (1999). ArticleCAS Google Scholar
Stefl, R., Skrisovska, L. & Allain, F.H. RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep.6, 33–38 (2005). ArticleCAS Google Scholar
Wu, H., Henras, A., Chanfreau, G. & Feigon, J. Structural basis for recognition of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase III. Proc. Natl. Acad. Sci. USA101, 8307–8312 (2004). ArticleCAS Google Scholar
Lu, D., Searles, M.A. & Klug, A. Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition. Nature426, 96–100 (2003). ArticleCAS Google Scholar
Williamson, J.R. Induced fit in RNA-protein recognition. Nat. Struct. Biol.7, 834–837 (2000). ArticleCAS Google Scholar
Maris, C., Dominguez, C. & Allain, F.H. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J.272, 2118–2131 (2005). ArticleCAS Google Scholar
DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science278, 680–686 (1997). ArticleCAS Google Scholar
Collart, M.A. & Timmers, H.T. The eukaryotic Ccr4-not complex: a regulatory platform integrating mRNA metabolism with cellular signaling pathways? Prog. Nucleic Acid Res. Mol. Biol.77, 289–322 (2004). ArticleCAS Google Scholar
Denis, C.L. & Chen, J. The CCR4-NOT complex plays diverse roles in mRNA metabolism. Prog. Nucleic Acid Res. Mol. Biol.73, 221–250 (2003). ArticleCAS Google Scholar
Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc.34, 93–158 (1999). ArticleCAS Google Scholar
Bax, A., Kontaxis, G. & Tjandra, N. Dipolar couplings in macromolecular structure determination. Methods Enzymol.339, 127–174 (2001). ArticleCAS Google Scholar
Peterson, R.D., Theimer, C.A., Wu, H. & Feigon, J. New applications of 2D filtered/edited NOESY for assignment and structure elucidation of RNA and RNA-protein complexes. J. Biomol. NMR28, 59–67 (2004). ArticleCAS Google Scholar
Zwahlen, C. et al. Method for measurement of intermolecular NOEs by multinuclear NMR spectrocopy:application to a bacteriophage lambda N-peptide/boxB RNA complex. J. Am. Chem. Soc.119, 6711–6721 (1997). ArticleCAS Google Scholar
Herrmann, T., Guntert, P. & Wuthrich, K. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol.319, 209–227 (2002). ArticleCAS Google Scholar
Guntert, P., Mumenthaler, C. & Wuthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol.273, 283–298 (1997). ArticleCAS Google Scholar
Case, D.A. et al. AMBER Version 7 (University of California, San Francisco, USA, 2002). Google Scholar
Cornell, W.D. et al. A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc.117, 5179–5197 (1995). ArticleCAS Google Scholar
Bashford, D. & Case, D. Generalized born models of macromolecular solvation effects. Annu. Rev. Phys. Chem.51, 129–152 (2000). ArticleCAS Google Scholar
Padrta, P., Stefl, R., Kralik, L., Zidek, L. & Sklenar, V. Refinement of d(GCGAAGC) hairpin structure using one- and two-bond residual dipolar couplings. J. Biomol. NMR24, 1–14 (2002). ArticleCAS Google Scholar
Tsui, V., Zhu, L., Huang, T.H., Wright, P.E. & Case, D.A. Assessment of zinc finger orientations by residual dipolar coupling constants. J. Biomol. NMR16, 9–21 (2000). ArticleCAS Google Scholar
Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR8, 477–486 (1996). ArticleCAS Google Scholar
Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph.14, 29–32, 51–55 (1996). Article Google Scholar
DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, USA, 2002). Google Scholar
Lee, A., Henras, A.K. & Chanfreau, G. Multiple RNA surveillance pathways limit aberrant expression of iron uptake mRNAs and prevent iron toxicity in S. cerevisiae. Mol. Cell19, 39–51 (2005). ArticleCAS Google Scholar
Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E.S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature423, 241–254 (2003). ArticleCAS Google Scholar
Duchow, H.K., Brechbiel, J.L., Chatterjee, S. & Gavis, E.R. The nanos translational control element represses translation in somatic cells by a Bearded box-like motif. Dev. Biol.282, 207–217 (2005). ArticleCAS Google Scholar
Mulder, F.A., Schipper, D., Bott, R. & Boelens, R. Altered flexibility in the substrate-binding site of related native and engineered high-alkaline _Bacillus subtilis_ins. J. Mol. Biol.292, 111–123 (1999). ArticleCAS Google Scholar
Ariyoshi, M., Nishino, T., Iwasaki, H., Shinagawa, H. & Morikawa, K. Crystal structure of the holliday junction DNA in complex with a single RuvA tetramer. Proc. Natl. Acad. Sci. USA97, 8257–8262 (2000). ArticleCAS Google Scholar