Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex (original) (raw)
Wang, Y. et al. Linking covalent histone modifications to epigenetics: the rigidity and plasticity of the marks. Cold Spring Harb. Symp. Quant. Biol.69, 161–169 (2004). ArticleCASPubMed Google Scholar
Jenuwein, T. & Allis, C.D. Translating the histone code. Science293, 1074–1080 (2001). CASPubMed Google Scholar
Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature403, 41–45 (2000). ArticleCASPubMed Google Scholar
Bernstein, B.E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell120, 169–181 (2005). ArticleCASPubMed Google Scholar
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410, 116–120 (2001). CASPubMed Google Scholar
Peters, A.H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell107, 323–337 (2001). ArticleCASPubMed Google Scholar
Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature419, 407–411 (2002). ArticleCASPubMed Google Scholar
Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science298, 1039–1043 (2002). ArticleCASPubMed Google Scholar
Bernstein, B.E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl. Acad. Sci. USA99, 8695–8700 (2002). ArticleCASPubMedPubMed Central Google Scholar
Briggs, S.D. et al. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev.15, 3286–3295 (2001). ArticleCASPubMedPubMed Central Google Scholar
Miller, T. et al. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc. Natl. Acad. Sci. USA98, 12902–12907 (2001). ArticleCASPubMedPubMed Central Google Scholar
Milne, T.A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell10, 1107–1117 (2002). ArticleCASPubMed Google Scholar
Nagy, P.L., Griesenbeck, J., Kornberg, R.D. & Cleary, M.L. A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc. Natl. Acad. Sci. USA99, 90–94 (2002). ArticleCASPubMed Google Scholar
Nakamura, T. et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol. Cell10, 1119–1128 (2002). ArticleCASPubMed Google Scholar
Roguev, A. et al. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J.20, 7137–7148 (2001). ArticleCASPubMedPubMed Central Google Scholar
Schneider, R., Bannister, A.J. & Kouzarides, T. Unsafe SETs: histone lysine methyltransferases and cancer. Trends Biochem. Sci.27, 396–402 (2002). ArticleCASPubMed Google Scholar
Hess, J.L. MLL: a histone methyltransferase disrupted in leukemia. Trends Mol. Med.10, 500–507 (2004). ArticleCASPubMed Google Scholar
Hughes, C.M. et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol. Cell13, 587–597 (2004). ArticleCASPubMed Google Scholar
Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell121, 859–872 (2005). ArticleCASPubMed Google Scholar
Yu, B.D., Hess, J.L., Horning, S.E., Brown, G.A. & Korsmeyer, S.J. Altered Hox expression and segmental identity in Mll-mutant mice. Nature378, 505–508 (1995). ArticleCASPubMed Google Scholar
Terranova, R., Agherbi, H., Boned, A., Meresse, S. & Djabali, M. Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll. Proc. Natl. Acad. Sci. USA103, 6629–6634 (2006). ArticleCASPubMedPubMed Central Google Scholar
Han, Z. et al. Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5. Mol. Cell22, 137–144 (2006). ArticleCASPubMed Google Scholar
Sprague, E.R., Redd, M.J., Johnson, A.D. & Wolberger, C. Structure of the C-terminal domain of Tup1, a corepressor of transcription in yeast. EMBO J.19, 3016–3027 (2000). ArticleCASPubMedPubMed Central Google Scholar
Henderson, R. Structure of crystalline alpha-chymotrypsin. IV. The structure of indoleacryloyl-alpha-chyotrypsin and its relevance to the hydrolytic mechanism of the enzyme. J. Mol. Biol.54, 341–354 (1970). ArticleCASPubMed Google Scholar
Li et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature advance online publication 21 May 2006.
Huang, Y., Fang, J., Bedford, M.T., Zhang, Y. & Xu, R.M. Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science312, 748–751 (2006). ArticleCASPubMed Google Scholar
Flanagan, J.F. et al. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature438, 1181–1185 (2005). ArticleCASPubMed Google Scholar
Jacobs, S.A. & Khorasanizadeh, S. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science295, 2080–2083 (2002). ArticleCASPubMed Google Scholar
Zhang, X. et al. Structural basis for the product specificity of histone lysine methyltransferases. Mol. Cell12, 177–185 (2003). ArticlePubMedPubMed Central Google Scholar
Xiao, B. et al. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature421, 652–656 (2003). ArticleCASPubMed Google Scholar
Scheiner, S., Kar, T. & Gu, Y. Strength of the Calpha H.O hydrogen bond of amino acid residues. J. Biol. Chem.276, 9832–9837 (2001). ArticleCASPubMed Google Scholar
Dou, Y. et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat. Struct. Mol. Biol. (in the press).
Chin, H.G., Patnaik, D., Esteve, P.O., Jacobsen, S.E. & Pradhan, S. Catalytic properties and kinetic mechanism of human recombinant Lys-9 histone H3 methyltransferase SUV39H1: participation of the chromodomain in enzymatic catalysis. Biochemistry45, 3272–3284 (2006). ArticleCASPubMed Google Scholar
Hu, P. & Zhang, Y. Catalytic mechanism and product specificity of the histone lysine methyltransferase SET7/9: an ab initio QM/MM-FE study with multiple initial structures. J. Am. Chem. Soc.128, 1272–1278 (2006). ArticleCASPubMed Google Scholar
Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature406, 593–599 (2000). CASPubMed Google Scholar
Milne, T.A. et al. MLL associates specifically with a subset of transcriptionally active target genes. Proc. Natl. Acad. Sci. USA102, 14765–14770 (2005). ArticleCASPubMedPubMed Central Google Scholar
Cao, R. & Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol. Cell15, 57–67 (2004). ArticleCASPubMed Google Scholar
Verreault, A., Kaufman, P.D., Kobayashi, R. & Stillman, B. Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr. Biol.8, 96–108 (1998). ArticleCASPubMed Google Scholar
Chen, G. & Courey, A.J. Groucho/TLE family proteins and transcriptional repression. Gene249, 1–16 (2000). ArticleCASPubMed Google Scholar
Ahmad, A., Takami, Y. & Nakayama, T. WD dipeptide motifs and LXXLL motif of chicken HIRA are essential for interactions with the p48 subunit of chromatin assembly factor-1 and histone deacetylase-2 in vitro and in vivo. Gene342, 125–136 (2004). ArticleCASPubMed Google Scholar
Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr.30, 1022–1025 (1997). ArticleCAS Google Scholar
Read, R.J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D Biol. Crystallogr.57, 1373–1382 (2001). ArticleCASPubMed Google Scholar
Collaborative Computational Project. Number 4. The CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr.50, 760–763 (1994).
Morris, R.J. et al. Breaking good resolutions with ARP/wARP. J. Synchrotron Radiat.11, 56–59 (2004). ArticleCASPubMed Google Scholar
Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr.54, 905–921 (1998). ArticleCASPubMed Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.60, 2126–2132 (2004). ArticlePubMed Google Scholar
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr.53, 240–255 (1997). ArticleCASPubMed Google Scholar
Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D Biol. Crystallogr.57, 122–133 (2001). ArticleCASPubMed Google Scholar
Schuttelkopf, A.W. & van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr.60, 1355–1363 (2004). ArticlePubMed Google Scholar
Laskowski, R.J., Macarthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr.26, 283–290 (1993). ArticleCAS Google Scholar
Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA98, 10037–10041 (2001). ArticleCASPubMedPubMed Central Google Scholar