Dynamically driven protein allostery (original) (raw)

References

  1. Hardy, J.A. & Wells, J.A. Searching for new allosteric sites in enzymes. Curr. Opin. Struct. Biol. 14, 706–715 (2004).
    Article CAS Google Scholar
  2. Gao, Z.G. & Jacobson, K.A. Allosterism in membrane receptors. Drug Discov. Today 11, 191–202 (2006).
    Article CAS Google Scholar
  3. Swain, J.F. & Gierasch, L.M. The changing landscape of protein allostery. Curr. Opin. Struct. Biol. 16, 102–108 (2006).
    Article CAS Google Scholar
  4. Suel, G.M., Lockless, S.W., Wall, M.A. & Ranganathan, R. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 10, 59–69 (2003).
    Article Google Scholar
  5. Koshland, D.E., Jr. Conformational changes: how small is big enough? Nat. Med. 4, 1112–1114 (1998).
    Article CAS Google Scholar
  6. Changeux, J.P. & Edelstein, S.J. Allosteric mechanisms of signal transduction. Science 308, 1424–1428 (2005).
    Article CAS Google Scholar
  7. Bray, D. & Duke, T. Conformational spread: the propagation of allosteric states in large multiprotein complexes. Annu. Rev. Biophys. Biomol. Struct. 33, 53–73 (2004).
    Article CAS Google Scholar
  8. Wand, A.J. Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat. Struct. Biol. 8, 926–931 (2001).
    Article CAS Google Scholar
  9. Homans, S.W. Probing the binding entropy of ligand-protein interactions by NMR. ChemBioChem 6, 1585–1591 (2005).
    Article CAS Google Scholar
  10. Cooper, A. & Dryden, D.T. Allostery without conformational change. A plausible model. Eur. Biophys. J. 11, 103–109 (1984).
    Article CAS Google Scholar
  11. Freire, E. The propagation of binding interactions to remote sites in proteins: analysis of the binding of the monoclonal antibody D1.3 to lysozyme. Proc. Natl. Acad. Sci. USA 96, 10118–10122 (1999).
    Article CAS Google Scholar
  12. Pan, H., Lee, J.C. & Hilser, V.J. Binding sites in Escherichia coli dihydrofolate reductase communicate by modulating the conformational ensemble. Proc. Natl. Acad. Sci. USA 97, 12020–12025 (2000).
    Article CAS Google Scholar
  13. Kern, D. & Zuiderweg, E.R. The role of dynamics in allosteric regulation. Curr. Opin. Struct. Biol. 13, 748–757 (2003).
    Article CAS Google Scholar
  14. Stevens, S.Y., Sanker, S., Kent, C. & Zuiderweg, E.R. Delineation of the allosteric mechanism of a cytidylyltransferase exhibiting negative cooperativity. Nat. Struct. Biol. 8, 947–952 (2001).
    Article CAS Google Scholar
  15. Maler, L., Blankenship, J., Rance, M. & Chazin, W.J. Site-site communication in the EF-hand Ca2+-binding protein calbindin D9k. Nat. Struct. Biol. 7, 245–250 (2000).
    Article CAS Google Scholar
  16. Lee, A.L., Kinnear, S.A. & Wand, A.J. Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex. Nat. Struct. Biol. 7, 72–77 (2000).
    Article CAS Google Scholar
  17. Fuentes, E.J., Der, C.J. & Lee, A.L. Ligand-dependent dynamics and intramolecular signaling in a PDZ domain. J. Mol. Biol. 335, 1105–1115 (2004).
    Article CAS Google Scholar
  18. Koshland, D.E., Jr. The structural basis of negative cooperativity: receptors and enzymes. Curr. Opin. Struct. Biol. 6, 757–761 (1996).
    Article CAS Google Scholar
  19. Brown, A.M. & Crothers, D.M. Modulation of the stability of a gene-regulatory protein dimer by DNA and cAMP. Proc. Natl. Acad. Sci. USA 86, 7387–7391 (1989).
    Article CAS Google Scholar
  20. Harman, J.G. Allosteric regulation of the cAMP receptor protein. Biochim. Biophys. Acta 1547, 1–17 (2001).
    Article CAS Google Scholar
  21. Passner, J.M., Schultz, S.C. & Steitz, T.A. Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 A resolution. J. Mol. Biol. 304, 847–859 (2000).
    Article CAS Google Scholar
  22. Heyduk, E., Heyduk, T. & Lee, J.C. Intersubunit communications in Escherichia coli cyclic AMP receptor protein: studies of the ligand binding domain. Biochemistry 31, 3682–3688 (1992).
    Article CAS Google Scholar
  23. Akke, M. NMR methods for characterizing microsecond to millisecond dynamics in recognition and catalysis. Curr. Opin. Struct. Biol. 12, 642–647 (2002).
    Article CAS Google Scholar
  24. Volkman, B.F., Lipson, D., Wemmer, D.E. & Kern, D. Two-state allosteric behavior in a single-domain signaling protein. Science 291, 2429–2433 (2001).
    Article CAS Google Scholar
  25. Kalodimos, C.G. et al. Structure and flexibility adaptation in nonspecific and specific protein-DNA complexes. Science 305, 386–389 (2004).
    Article CAS Google Scholar
  26. Keramisanou, D. et al. Disorder-order folding transitions underlie catalysis in the helicase motor of SecA. Nat. Struct. Mol. Biol. 13, 594–602 (2006).
    Article CAS Google Scholar
  27. Mulder, F.A., Mittermaier, A., Hon, B., Dahlquist, F.W. & Kay, L.E. Studying excited states of proteins by NMR spectroscopy. Nat. Struct. Biol. 8, 932–935 (2001).
    Article CAS Google Scholar
  28. Forman-Kay, J.D. The 'dynamics' in the thermodynamics of binding. Nat. Struct. Biol. 6, 1086–1087 (1999).
    Article CAS Google Scholar
  29. Cavanagh, J. & Akke, M. May the driving force be with you–whatever it is. Nat. Struct. Biol. 7, 11–13 (2000).
    Article CAS Google Scholar
  30. Zidek, L., Novotny, M.V. & Stone, M.J. Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nat. Struct. Biol. 6, 1118–1121 (1999).
    Article CAS Google Scholar
  31. Stone, M.J. NMR relaxation studies of the role of conformational entropy in protein stability and ligand binding. Acc. Chem. Res. 34, 379–388 (2001).
    Article CAS Google Scholar
  32. Igumenova, T.I., Frederick, K.K. & Wand, A.J. Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chem. Rev. 106, 1672–1699 (2006).
    Article CAS Google Scholar
  33. Hilser, V.J., Garcia-Moreno, E.B., Oas, T.G., Kapp, G. & Whitten, S.T. A statistical thermodynamic model of the protein ensemble. Chem. Rev. 106, 1545–1558 (2006).
    Article CAS Google Scholar
  34. Gekko, K., Obu, N., Li, J. & Lee, J.C. A linear correlation between the energetics of allosteric communication and protein flexibility in the Escherichia coli cyclic AMP receptor protein revealed by mutation-induced changes in compressibility and amide hydrogen-deuterium exchange. Biochemistry 43, 3844–3852 (2004).
    Article CAS Google Scholar
  35. Englander, J.J., Louie, G., McKinnie, R.E. & Englander, S.W. Energetic components of the allosteric machinery in hemoglobin measured by hydrogen exchange. J. Mol. Biol. 284, 1695–1706 (1998).
    Article CAS Google Scholar
  36. Yang, D. & Kay, L.E. Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J. Mol. Biol. 263, 369–382 (1996).
    Article CAS Google Scholar
  37. Bracken, C., Carr, P.A., Cavanagh, J. & Palmer, A.G., III Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: implications for the entropy of association with DNA. J. Mol. Biol. 285, 2133–2146 (1999).
    Article CAS Google Scholar
  38. Gunasekaran, K., Ma, B. & Nussinov, R. Is allostery an intrinsic property of all dynamic proteins? Proteins 57, 433–443 (2004).
    Article CAS Google Scholar
  39. Anderson, A.C., O'Neil, R.H., DeLano, W.L. & Stroud, R.M. The structural mechanism for half-the-sites reactivity in an enzyme, thymidylate synthase, involves a relay of changes between subunits. Biochemistry 38, 13829–13836 (1999).
    Article CAS Google Scholar
  40. Leslie, A.G. & Wonacott, A.J. Structural evidence for ligand-induced sequential conformational changes in glyceraldehyde 3-phosphate dehydrogenase. J. Mol. Biol. 178, 743–772 (1984).
    Article CAS Google Scholar
  41. Hampele, I.C. et al. Structure and function of the dihydropteroate synthase from Staphylococcus aureus. J. Mol. Biol. 268, 21–30 (1997).
    Article CAS Google Scholar
  42. Lee, A.L. & Wand, A.J. Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 411, 501–504 (2001).
    Article CAS Google Scholar
  43. Evenas, J. et al. Ligand-induced structural changes to maltodextrin-binding protein as studied by solution NMR spectroscopy. J. Mol. Biol. 309, 961–974 (2001).
    Article CAS Google Scholar
  44. Korzhnev, D.M., Skrynnikov, N.R., Millet, O., Torchia, D.A. & Kay, L.E. An NMR experiment for the accurate measurement of heteronuclear spin-lock relaxation rates. J. Am. Chem. Soc. 124, 10743–10753 (2002).
    Article CAS Google Scholar
  45. Farrow, N.A., Zhang, O., Szabo, A., Torchia, D.A. & Kay, L.E. Spectral density function mapping using 15N relaxation data exclusively. J. Biomol. NMR 6, 153–162 (1995).
    Article CAS Google Scholar
  46. Lefevre, J.F., Dayie, K.T., Peng, J.W. & Wagner, G. Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions. Biochemistry 35, 2674–2686 (1996).
    Article CAS Google Scholar
  47. Krizova, H., Zidek, L., Stone, M.J., Novotny, M.V. & Sklenar, V. Temperature-dependent spectral density analysis applied to monitoring backbone dynamics of major urinary protein-I complexed with the pheromone 2-sec-butyl-4,5-dihydrothiazole. J. Biomol. NMR 28, 369–384 (2004).
    Article CAS Google Scholar

Download references