Dynamically driven protein allostery (original) (raw)
References
Hardy, J.A. & Wells, J.A. Searching for new allosteric sites in enzymes. Curr. Opin. Struct. Biol.14, 706–715 (2004). ArticleCAS Google Scholar
Gao, Z.G. & Jacobson, K.A. Allosterism in membrane receptors. Drug Discov. Today11, 191–202 (2006). ArticleCAS Google Scholar
Swain, J.F. & Gierasch, L.M. The changing landscape of protein allostery. Curr. Opin. Struct. Biol.16, 102–108 (2006). ArticleCAS Google Scholar
Suel, G.M., Lockless, S.W., Wall, M.A. & Ranganathan, R. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol.10, 59–69 (2003). Article Google Scholar
Koshland, D.E., Jr. Conformational changes: how small is big enough? Nat. Med.4, 1112–1114 (1998). ArticleCAS Google Scholar
Changeux, J.P. & Edelstein, S.J. Allosteric mechanisms of signal transduction. Science308, 1424–1428 (2005). ArticleCAS Google Scholar
Bray, D. & Duke, T. Conformational spread: the propagation of allosteric states in large multiprotein complexes. Annu. Rev. Biophys. Biomol. Struct.33, 53–73 (2004). ArticleCAS Google Scholar
Wand, A.J. Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat. Struct. Biol.8, 926–931 (2001). ArticleCAS Google Scholar
Homans, S.W. Probing the binding entropy of ligand-protein interactions by NMR. ChemBioChem6, 1585–1591 (2005). ArticleCAS Google Scholar
Cooper, A. & Dryden, D.T. Allostery without conformational change. A plausible model. Eur. Biophys. J.11, 103–109 (1984). ArticleCAS Google Scholar
Freire, E. The propagation of binding interactions to remote sites in proteins: analysis of the binding of the monoclonal antibody D1.3 to lysozyme. Proc. Natl. Acad. Sci. USA96, 10118–10122 (1999). ArticleCAS Google Scholar
Pan, H., Lee, J.C. & Hilser, V.J. Binding sites in Escherichia coli dihydrofolate reductase communicate by modulating the conformational ensemble. Proc. Natl. Acad. Sci. USA97, 12020–12025 (2000). ArticleCAS Google Scholar
Kern, D. & Zuiderweg, E.R. The role of dynamics in allosteric regulation. Curr. Opin. Struct. Biol.13, 748–757 (2003). ArticleCAS Google Scholar
Stevens, S.Y., Sanker, S., Kent, C. & Zuiderweg, E.R. Delineation of the allosteric mechanism of a cytidylyltransferase exhibiting negative cooperativity. Nat. Struct. Biol.8, 947–952 (2001). ArticleCAS Google Scholar
Maler, L., Blankenship, J., Rance, M. & Chazin, W.J. Site-site communication in the EF-hand Ca2+-binding protein calbindin D9k. Nat. Struct. Biol.7, 245–250 (2000). ArticleCAS Google Scholar
Lee, A.L., Kinnear, S.A. & Wand, A.J. Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex. Nat. Struct. Biol.7, 72–77 (2000). ArticleCAS Google Scholar
Fuentes, E.J., Der, C.J. & Lee, A.L. Ligand-dependent dynamics and intramolecular signaling in a PDZ domain. J. Mol. Biol.335, 1105–1115 (2004). ArticleCAS Google Scholar
Koshland, D.E., Jr. The structural basis of negative cooperativity: receptors and enzymes. Curr. Opin. Struct. Biol.6, 757–761 (1996). ArticleCAS Google Scholar
Brown, A.M. & Crothers, D.M. Modulation of the stability of a gene-regulatory protein dimer by DNA and cAMP. Proc. Natl. Acad. Sci. USA86, 7387–7391 (1989). ArticleCAS Google Scholar
Harman, J.G. Allosteric regulation of the cAMP receptor protein. Biochim. Biophys. Acta1547, 1–17 (2001). ArticleCAS Google Scholar
Passner, J.M., Schultz, S.C. & Steitz, T.A. Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 A resolution. J. Mol. Biol.304, 847–859 (2000). ArticleCAS Google Scholar
Heyduk, E., Heyduk, T. & Lee, J.C. Intersubunit communications in Escherichia coli cyclic AMP receptor protein: studies of the ligand binding domain. Biochemistry31, 3682–3688 (1992). ArticleCAS Google Scholar
Akke, M. NMR methods for characterizing microsecond to millisecond dynamics in recognition and catalysis. Curr. Opin. Struct. Biol.12, 642–647 (2002). ArticleCAS Google Scholar
Volkman, B.F., Lipson, D., Wemmer, D.E. & Kern, D. Two-state allosteric behavior in a single-domain signaling protein. Science291, 2429–2433 (2001). ArticleCAS Google Scholar
Kalodimos, C.G. et al. Structure and flexibility adaptation in nonspecific and specific protein-DNA complexes. Science305, 386–389 (2004). ArticleCAS Google Scholar
Keramisanou, D. et al. Disorder-order folding transitions underlie catalysis in the helicase motor of SecA. Nat. Struct. Mol. Biol.13, 594–602 (2006). ArticleCAS Google Scholar
Mulder, F.A., Mittermaier, A., Hon, B., Dahlquist, F.W. & Kay, L.E. Studying excited states of proteins by NMR spectroscopy. Nat. Struct. Biol.8, 932–935 (2001). ArticleCAS Google Scholar
Forman-Kay, J.D. The 'dynamics' in the thermodynamics of binding. Nat. Struct. Biol.6, 1086–1087 (1999). ArticleCAS Google Scholar
Cavanagh, J. & Akke, M. May the driving force be with you–whatever it is. Nat. Struct. Biol.7, 11–13 (2000). ArticleCAS Google Scholar
Zidek, L., Novotny, M.V. & Stone, M.J. Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nat. Struct. Biol.6, 1118–1121 (1999). ArticleCAS Google Scholar
Stone, M.J. NMR relaxation studies of the role of conformational entropy in protein stability and ligand binding. Acc. Chem. Res.34, 379–388 (2001). ArticleCAS Google Scholar
Igumenova, T.I., Frederick, K.K. & Wand, A.J. Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chem. Rev.106, 1672–1699 (2006). ArticleCAS Google Scholar
Hilser, V.J., Garcia-Moreno, E.B., Oas, T.G., Kapp, G. & Whitten, S.T. A statistical thermodynamic model of the protein ensemble. Chem. Rev.106, 1545–1558 (2006). ArticleCAS Google Scholar
Gekko, K., Obu, N., Li, J. & Lee, J.C. A linear correlation between the energetics of allosteric communication and protein flexibility in the Escherichia coli cyclic AMP receptor protein revealed by mutation-induced changes in compressibility and amide hydrogen-deuterium exchange. Biochemistry43, 3844–3852 (2004). ArticleCAS Google Scholar
Englander, J.J., Louie, G., McKinnie, R.E. & Englander, S.W. Energetic components of the allosteric machinery in hemoglobin measured by hydrogen exchange. J. Mol. Biol.284, 1695–1706 (1998). ArticleCAS Google Scholar
Yang, D. & Kay, L.E. Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J. Mol. Biol.263, 369–382 (1996). ArticleCAS Google Scholar
Bracken, C., Carr, P.A., Cavanagh, J. & Palmer, A.G., III Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: implications for the entropy of association with DNA. J. Mol. Biol.285, 2133–2146 (1999). ArticleCAS Google Scholar
Gunasekaran, K., Ma, B. & Nussinov, R. Is allostery an intrinsic property of all dynamic proteins? Proteins57, 433–443 (2004). ArticleCAS Google Scholar
Anderson, A.C., O'Neil, R.H., DeLano, W.L. & Stroud, R.M. The structural mechanism for half-the-sites reactivity in an enzyme, thymidylate synthase, involves a relay of changes between subunits. Biochemistry38, 13829–13836 (1999). ArticleCAS Google Scholar
Leslie, A.G. & Wonacott, A.J. Structural evidence for ligand-induced sequential conformational changes in glyceraldehyde 3-phosphate dehydrogenase. J. Mol. Biol.178, 743–772 (1984). ArticleCAS Google Scholar
Hampele, I.C. et al. Structure and function of the dihydropteroate synthase from Staphylococcus aureus. J. Mol. Biol.268, 21–30 (1997). ArticleCAS Google Scholar
Lee, A.L. & Wand, A.J. Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature411, 501–504 (2001). ArticleCAS Google Scholar
Evenas, J. et al. Ligand-induced structural changes to maltodextrin-binding protein as studied by solution NMR spectroscopy. J. Mol. Biol.309, 961–974 (2001). ArticleCAS Google Scholar
Korzhnev, D.M., Skrynnikov, N.R., Millet, O., Torchia, D.A. & Kay, L.E. An NMR experiment for the accurate measurement of heteronuclear spin-lock relaxation rates. J. Am. Chem. Soc.124, 10743–10753 (2002). ArticleCAS Google Scholar
Farrow, N.A., Zhang, O., Szabo, A., Torchia, D.A. & Kay, L.E. Spectral density function mapping using 15N relaxation data exclusively. J. Biomol. NMR6, 153–162 (1995). ArticleCAS Google Scholar
Lefevre, J.F., Dayie, K.T., Peng, J.W. & Wagner, G. Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions. Biochemistry35, 2674–2686 (1996). ArticleCAS Google Scholar
Krizova, H., Zidek, L., Stone, M.J., Novotny, M.V. & Sklenar, V. Temperature-dependent spectral density analysis applied to monitoring backbone dynamics of major urinary protein-I complexed with the pheromone 2-sec-butyl-4,5-dihydrothiazole. J. Biomol. NMR28, 369–384 (2004). ArticleCAS Google Scholar