L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells (original) (raw)

References

  1. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
    Article CAS Google Scholar
  2. Ostertag, E.M. & Kazazian, H.H., Jr. Biology of mammalian L1 retrotransposons. Annu. Rev. Genet. 35, 501–538 (2001).
    Article CAS Google Scholar
  3. Kazazian, H.H., Jr. Mobile elements: drivers of genome evolution. Science 303, 1626–1632 (2004).
    Article CAS Google Scholar
  4. Wei, W. et al. Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell. Biol. 21, 1429–1439 (2001).
    Article CAS Google Scholar
  5. Kulpa, D.A. & Moran, J.V. _Cis_-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat. Struct. Mol. Biol. 13, 655–660 (2006).
    Article CAS Google Scholar
  6. Hohjoh, H. & Singer, M.F. Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J. 16, 6034–6043 (1997).
    Article CAS Google Scholar
  7. Martin, S.L. & Bushman, F.D. Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol. Cell. Biol. 21, 467–475 (2001).
    Article CAS Google Scholar
  8. Feng, Q., Moran, J.V., Kazazian, H.H., Jr. & Boeke, J.D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905–916 (1996).
    Article CAS Google Scholar
  9. Moran, J.V. et al. High frequency retrotransposition in cultured mammalian cells. Cell 87, 917–927 (1996).
    Article CAS Google Scholar
  10. Mathias, S.L., Scott, A.F., Kazazian, H.H., Jr., Boeke, J.D. & Gabriel, A. Reverse transcriptase encoded by a human transposable element. Science 254, 1808–1810 (1991).
    Article CAS Google Scholar
  11. Luan, D.D., Korman, M.H., Jakubczak, J.L. & Eickbush, T.H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72, 595–605 (1993).
    Article CAS Google Scholar
  12. Moran, J.V., DeBerardinis, R.J. & Kazazian, H.H., Jr. Exon shuffling by L1 retrotransposition. Science 283, 1530–1534 (1999).
    Article CAS Google Scholar
  13. Morrish, T.A. et al. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat. Genet. 31, 159–165 (2002).
    Article CAS Google Scholar
  14. Boissinot, S., Entezam, A. & Furano, A.V. Selection against deleterious LINE-1-containing loci in the human lineage. Mol. Biol. Evol. 18, 926–935 (2001).
    Article CAS Google Scholar
  15. Bayne, E.H. & Allshire, R.C. RNA-directed transcriptional gene silencing in mammals. Trends Genet. 21, 370–373 (2005).
    Article CAS Google Scholar
  16. Kim, V.N. Small RNAs: classification, biogenesis, and function. Mol. Cells 19, 1–15 (2005).
    Article CAS Google Scholar
  17. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).
    Article CAS Google Scholar
  18. Zamore, P.D., Tuschl, T., Sharp, P.A. & Bartel, D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).
    Article CAS Google Scholar
  19. Bernstein, E., Caudy, A.A., Hammond, S.M. & Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).
    Article CAS Google Scholar
  20. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002).
    Article CAS Google Scholar
  21. Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476 (2004).
    Article CAS Google Scholar
  22. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132 (1999).
    Article CAS Google Scholar
  23. Ketting, R.F., Haverkamp, T.H., van Luenen, H.G. & Plasterk, R.H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133–141 (1999).
    Article CAS Google Scholar
  24. Sijen, T. & Plasterk, R.H. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426, 310–314 (2003).
    Article CAS Google Scholar
  25. Svoboda, P. et al. RNAi and expression of retrotransposons MuERV-L and IAP in preimplantation mouse embryos. Dev. Biol. 269, 276–285 (2004).
    Article CAS Google Scholar
  26. Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501 (2005).
    Article CAS Google Scholar
  27. Swergold, G.D. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell. Biol. 10, 6718–6729 (1990).
    Article CAS Google Scholar
  28. Speek, M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell. Biol. 21, 1973–1985 (2001).
    Article CAS Google Scholar
  29. Nigumann, P., Redik, K., Matlik, K. & Speek, M. Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79, 628–634 (2002).
    Article CAS Google Scholar
  30. Athanikar, J.N., Badge, R.M. & Moran, J.V.A. YY1-binding site is required for accurate human LINE-1 transcription initiation. Nucleic Acids Res. 32, 3846–3855 (2004).
    Article CAS Google Scholar
  31. Lavie, L., Maldener, E., Brouha, B., Meese, E.U. & Mayer, J. The human L1 promoter: variable transcription initiation sites and a major impact of upstream flanking sequence on promoter activity. Genome Res. 14, 2253–2260 (2004).
    Article CAS Google Scholar
  32. Matranga, C., Tomari, Y., Shin, C., Bartel, D.P. & Zamore, P.D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620 (2005).
    Article CAS Google Scholar
  33. Ostertag, E.M., Prak, E.T., DeBerardinis, R.J., Moran, J.V. & Kazazian, H.H., Jr. Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res. 28, 1418–1423 (2000).
    Article CAS Google Scholar
  34. Tchenio, T., Casella, J.F. & Heidmann, T. Members of the SRY family regulate the human LINE retrotransposons. Nucleic Acids Res. 28, 411–415 (2000).
    Article CAS Google Scholar
  35. Yang, N., Zhang, L., Zhang, Y. & Kazazian, H.H., Jr. An important role for RUNX3 in human L1 transcription and retrotransposition. Nucleic Acids Res. 31, 4929–4940 (2003).
    Article CAS Google Scholar
  36. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).
    Article Google Scholar
  37. Weis, L. & Reinberg, D. Accurate positioning of RNA polymerase II on a natural TATA-less promoter is independent of TATA-binding-protein-associated factors and initiator-binding proteins. Mol. Cell. Biol. 17, 2973–2984 (1997).
    Article CAS Google Scholar
  38. Parks, C.L. & Shenk, T. The serotonin 1a receptor gene contains a TATA-less promoter that responds to MAZ and Sp1. J. Biol. Chem. 271, 4417–4430 (1996).
    Article CAS Google Scholar
  39. Soifer, H.S., Zaragoza, A., Peyvan, M., Behlke, M.A. & Rossi, J.J. A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon. Nucleic Acids Res. 33, 846–856 (2005).
    Article CAS Google Scholar
  40. Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003).
    Article CAS Google Scholar
  41. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).
    Article CAS Google Scholar
  42. Khan, H., Smit, A. & Boissinot, S. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res. 16, 78–87 (2006).
    Article CAS Google Scholar
  43. Lu, C. et al. Elucidation of the small RNA component of the transcriptome. Science 309, 1567–1569 (2005).
    Article CAS Google Scholar
  44. Shinagawa, T. & Ishii, S. Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes Dev. 17, 1340–1345 (2003).
    Article CAS Google Scholar
  45. Robb, G.B., Brown, K.M., Khurana, J. & Rana, T.M. Specific and potent RNAi in the nucleus of human cells. Nat. Struct. Mol. Biol. 12, 133–137 (2005).
    Article CAS Google Scholar
  46. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).
    Article CAS Google Scholar
  47. Bourc'his, D. & Bestor, T.H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 96–99 (2004).
    Article CAS Google Scholar
  48. Hata, K. & Sakaki, Y. Identification of critical CpG sites for repression of L1 transcription by DNA methylation. Gene 189, 227–234 (1997).
    Article CAS Google Scholar
  49. Yu, F., Zingler, N., Schumann, G. & Stratling, W.H. Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription. Nucleic Acids Res. 29, 4493–4501 (2001).
    Article CAS Google Scholar
  50. Perepelitsa-Belancio, V. & Deininger, P. RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat. Genet. 35, 363–366 (2003).
    Article CAS Google Scholar
  51. Han, J.S., Szak, S.T. & Boeke, J.D. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429, 268–274 (2004).
    Article CAS Google Scholar
  52. Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 1732–1743 (2006).
    Article CAS Google Scholar
  53. Yang, N., Zhang, L. & Kazazian, H.H., Jr. L1 retrotransposon-mediated stable gene silencing. Nucleic Acids Res. 33, e57 (2005).
    Article Google Scholar
  54. Yu, J., Li, Y., Ishizuka, T., Guenther, M.G. & Lazar, M.A.A. SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. EMBO J. 22, 3403–3410 (2003).
    Article CAS Google Scholar

Download references