The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing (original) (raw)

References

  1. Huisinga, K.L., Brower-Toland, B. & Elgin, S.C. The contradictory definitions of heterochromatin: transcription and silencing. Chromosoma 115, 110–122 (2006).
    Article CAS PubMed Google Scholar
  2. Sun, F.L., Cuaycong, M.H. & Elgin, S.C. Long-range nucleosome ordering is associated with gene silencing in Drosophila melanogaster pericentric heterochromatin. Mol. Cell. Biol. 21, 2867–2879 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  3. Fyodorov, D.V., Blower, M.D., Karpen, G.H. & Kadonaga, J.T. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev. 18, 170–183 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  4. Ito, T., Bulger, M., Pazin, M.J., Kobayashi, R. & Kadonaga, J.T. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155 (1997).
    Article CAS PubMed Google Scholar
  5. Deuring, R. et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5, 355–365 (2000).
    Article CAS PubMed Google Scholar
  6. Fazzio, T.G. et al. Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol. Cell. Biol. 21, 6450–6460 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  7. Goldmark, J.P., Fazzio, T.G., Estep, P.W., Church, G.M. & Tsukiyama, T. The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103, 423–433 (2000).
    Article CAS PubMed Google Scholar
  8. Kang, J.G., Hamiche, A. & Wu, C. GAL4 directs nucleosome sliding induced by NURF. EMBO J. 21, 1406–1413 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  9. Mizuguchi, G., Tsukiyama, T., Wisniewski, J. & Wu, C. Role of nucleosome remodeling factor NURF in transcriptional activation of chromatin. Mol. Cell 1, 141–150 (1997).
    Article CAS PubMed Google Scholar
  10. Hamiche, A., Sandaltzopoulos, R., Gdula, D.A. & Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97, 833–842 (1999).
    Article CAS PubMed Google Scholar
  11. Eberharter, A. et al. Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodeling. EMBO J. 20, 3781–3788 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  12. Langst, G., Bonte, E.J., Corona, D.F. & Becker, P.B. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97, 843–852 (1999).
    Article CAS PubMed Google Scholar
  13. Tsukiyama, T., Palmer, J., Landel, C.C., Shiloach, J. & Wu, C. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev. 13, 686–697 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  14. Varga-Weisz, P.D. et al. Chromatin-remodeling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388, 598–602 (1997).
    Article CAS PubMed Google Scholar
  15. Corona, D.F. et al. ISWI is an ATP-dependent nucleosome remodeling factor. Mol. Cell 3, 239–245 (1999).
    Article CAS PubMed Google Scholar
  16. Poot, R.A. et al. HuCHRAC, a human ISWI chromatin remodeling complex contains hACF1 and two novel histone-fold proteins. EMBO J. 19, 3377–3387 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  17. LeRoy, G., Orphanides, G., Lane, W.S. & Reinberg, D. Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science 282, 1900–1904 (1998).
    Article CAS PubMed Google Scholar
  18. Fan, H.Y., He, X., Kingston, R.E. & Narlikar, G.J. Distinct strategies to make nucleosomal DNA accessible. Mol. Cell 11, 1311–1322 (2003).
    Article CAS PubMed Google Scholar
  19. Bochar, D.A. et al. A family of chromatin remodeling factors related to Williams syndrome transcription factor. Proc. Natl. Acad. Sci. USA 97, 1038–1043 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  20. Stockdale, C., Flaus, A., Ferreira, H. & Owen-Hughes, T. Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J. Biol. Chem. 281, 16279–16288 (2006).
    Article CAS PubMed Google Scholar
  21. He, X., Narlikar, G.J., Fan, H.Y. & Kingston, R.E. HAcf1 alters the remodeling strategy of SNF2H. J. Biol. Chem. 281, 28636–28647 (2006).
    Article CAS PubMed Google Scholar
  22. Ito, T. et al. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev. 13, 1529–1539 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  23. Lowary, P.T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).
    Article CAS PubMed Google Scholar
  24. Wolffe, A.P. & Hayes, J.J. Transcription factor interaction with model nucleosomal templates. Methods Mol. Genet. 2, 314–330 (1993).
    CAS Google Scholar
  25. Lohman, T.M., Thorn, K. & Vale, R.D. Staying on track: common features of DNA helicases and microtubule motors. Cell 93, 9–12 (1998).
    Article CAS PubMed Google Scholar
  26. Schwanbeck, R., Xiao, H. & Wu, C. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J. Biol. Chem. 279, 39933–39941 (2004).
    Article CAS PubMed Google Scholar
  27. Zofall, M., Persinger, J., Kassabov, S.R. & Bartholomew, B. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat. Struct. Mol. Biol. 13, 339–346 (2006).
    Article CAS PubMed Google Scholar
  28. Strohner, R. et al. A 'loop recapture' mechanism for ACF-dependent nucleosome remodeling. Nat. Struct. Mol. Biol. 12, 683–690 (2005).
    Article CAS PubMed Google Scholar
  29. Kagalwala, M.N., Glaus, B.J., Dang, W., Zofall, M. & Bartholomew, B. Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J. 23, 2092–2104 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  30. Langst, G. & Becker, P.B. ISWI induces nucleosome sliding on nicked DNA. Mol. Cell 8, 1085–1092 (2001).
    Article CAS PubMed Google Scholar
  31. Fazzio, T.G. & Tsukiyama, T. Chromatin remodeling in vivo: evidence for a nucleosome sliding mechanism. Mol. Cell 12, 1333–1340 (2003).
    Article CAS PubMed Google Scholar
  32. Zofall, M., Persinger, J. & Bartholomew, B. Functional role of extranucleosomal DNA and the entry site of the nucleosome in chromatin remodeling by ISW2. Mol. Cell. Biol. 24, 10047–10057 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  33. Whitehouse, I., Stockdale, C., Flaus, A., Szczelkun, M.D. & Owen-Hughes, T. Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. Mol. Cell. Biol. 23, 1935–1945 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  34. Saha, A., Wittmeyer, J. & Cairns, B.R. Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes Dev. 16, 2120–2134 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  35. Amitani, I., Baskin, R.J. & Kowalczykowski, S.C. Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules. Mol. Cell 23, 143–148 (2006).
    Article CAS PubMed Google Scholar
  36. Lia, G. et al. Direct observation of DNA distortion by the RSC complex. Mol. Cell 21, 417–425 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  37. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  38. Whitehouse, I. & Tsukiyama, T. Antagonistic forces that position nucleosomes in vivo. Nat. Struct. Mol. Biol. 13, 633–640 (2006).
    Article CAS PubMed Google Scholar
  39. Flaus, A. & Owen-Hughes, T. Dynamic properties of nucleosomes during thermal and ATP-driven mobilization. Mol. Cell. Biol. 23, 7767–7779 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  40. Levenstein, M.E. & Kadonaga, J.T. Biochemical analysis of chromatin containing recombinant Drosophila core histones. J. Biol. Chem. 277, 8749–8754 (2002).
    Article CAS PubMed Google Scholar
  41. Aalfs, J.D., Narlikar, G.J. & Kingston, R.E. Functional differences between the human ATP-dependent nucleosome remodeling proteins BRG1 and SNF2H. J. Biol. Chem. 276, 34270–34278 (2001).
    Article CAS PubMed Google Scholar
  42. Luger, K., Rechsteiner, T.J. & Richmond, T.J. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol. 304, 3–19 (1999).
    Article CAS PubMed Google Scholar
  43. Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W. & Richmond, T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097–1113 (2002).
    Article CAS PubMed Google Scholar
  44. Mukhopadhyay, J. et al. Translocation of sigma(70) with RNA polymerase during transcription: fluorescence resonance energy transfer assay for movement relative to DNA. Cell 106, 453–463 (2001).
    Article CAS PubMed Google Scholar
  45. Narlikar, G.J., Phelan, M.L. & Kingston, R.E. Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol. Cell 8, 1219–1230 (2001).
    Article CAS PubMed Google Scholar

Download references