The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing (original) (raw)
References
Huisinga, K.L., Brower-Toland, B. & Elgin, S.C. The contradictory definitions of heterochromatin: transcription and silencing. Chromosoma115, 110–122 (2006). ArticleCASPubMed Google Scholar
Sun, F.L., Cuaycong, M.H. & Elgin, S.C. Long-range nucleosome ordering is associated with gene silencing in Drosophila melanogaster pericentric heterochromatin. Mol. Cell. Biol.21, 2867–2879 (2001). ArticleCASPubMedPubMed Central Google Scholar
Fyodorov, D.V., Blower, M.D., Karpen, G.H. & Kadonaga, J.T. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev.18, 170–183 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ito, T., Bulger, M., Pazin, M.J., Kobayashi, R. & Kadonaga, J.T. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell90, 145–155 (1997). ArticleCASPubMed Google Scholar
Deuring, R. et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell5, 355–365 (2000). ArticleCASPubMed Google Scholar
Fazzio, T.G. et al. Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol. Cell. Biol.21, 6450–6460 (2001). ArticleCASPubMedPubMed Central Google Scholar
Goldmark, J.P., Fazzio, T.G., Estep, P.W., Church, G.M. & Tsukiyama, T. The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell103, 423–433 (2000). ArticleCASPubMed Google Scholar
Mizuguchi, G., Tsukiyama, T., Wisniewski, J. & Wu, C. Role of nucleosome remodeling factor NURF in transcriptional activation of chromatin. Mol. Cell1, 141–150 (1997). ArticleCASPubMed Google Scholar
Hamiche, A., Sandaltzopoulos, R., Gdula, D.A. & Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell97, 833–842 (1999). ArticleCASPubMed Google Scholar
Langst, G., Bonte, E.J., Corona, D.F. & Becker, P.B. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell97, 843–852 (1999). ArticleCASPubMed Google Scholar
Tsukiyama, T., Palmer, J., Landel, C.C., Shiloach, J. & Wu, C. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev.13, 686–697 (1999). ArticleCASPubMedPubMed Central Google Scholar
Varga-Weisz, P.D. et al. Chromatin-remodeling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature388, 598–602 (1997). ArticleCASPubMed Google Scholar
Corona, D.F. et al. ISWI is an ATP-dependent nucleosome remodeling factor. Mol. Cell3, 239–245 (1999). ArticleCASPubMed Google Scholar
Poot, R.A. et al. HuCHRAC, a human ISWI chromatin remodeling complex contains hACF1 and two novel histone-fold proteins. EMBO J.19, 3377–3387 (2000). ArticleCASPubMedPubMed Central Google Scholar
LeRoy, G., Orphanides, G., Lane, W.S. & Reinberg, D. Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science282, 1900–1904 (1998). ArticleCASPubMed Google Scholar
Fan, H.Y., He, X., Kingston, R.E. & Narlikar, G.J. Distinct strategies to make nucleosomal DNA accessible. Mol. Cell11, 1311–1322 (2003). ArticleCASPubMed Google Scholar
Bochar, D.A. et al. A family of chromatin remodeling factors related to Williams syndrome transcription factor. Proc. Natl. Acad. Sci. USA97, 1038–1043 (2000). ArticleCASPubMedPubMed Central Google Scholar
Stockdale, C., Flaus, A., Ferreira, H. & Owen-Hughes, T. Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J. Biol. Chem.281, 16279–16288 (2006). ArticleCASPubMed Google Scholar
He, X., Narlikar, G.J., Fan, H.Y. & Kingston, R.E. HAcf1 alters the remodeling strategy of SNF2H. J. Biol. Chem.281, 28636–28647 (2006). ArticleCASPubMed Google Scholar
Ito, T. et al. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev.13, 1529–1539 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lowary, P.T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol.276, 19–42 (1998). ArticleCASPubMed Google Scholar
Wolffe, A.P. & Hayes, J.J. Transcription factor interaction with model nucleosomal templates. Methods Mol. Genet.2, 314–330 (1993). CAS Google Scholar
Lohman, T.M., Thorn, K. & Vale, R.D. Staying on track: common features of DNA helicases and microtubule motors. Cell93, 9–12 (1998). ArticleCASPubMed Google Scholar
Schwanbeck, R., Xiao, H. & Wu, C. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J. Biol. Chem.279, 39933–39941 (2004). ArticleCASPubMed Google Scholar
Zofall, M., Persinger, J., Kassabov, S.R. & Bartholomew, B. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat. Struct. Mol. Biol.13, 339–346 (2006). ArticleCASPubMed Google Scholar
Strohner, R. et al. A 'loop recapture' mechanism for ACF-dependent nucleosome remodeling. Nat. Struct. Mol. Biol.12, 683–690 (2005). ArticleCASPubMed Google Scholar
Kagalwala, M.N., Glaus, B.J., Dang, W., Zofall, M. & Bartholomew, B. Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J.23, 2092–2104 (2004). ArticleCASPubMedPubMed Central Google Scholar
Langst, G. & Becker, P.B. ISWI induces nucleosome sliding on nicked DNA. Mol. Cell8, 1085–1092 (2001). ArticleCASPubMed Google Scholar
Fazzio, T.G. & Tsukiyama, T. Chromatin remodeling in vivo: evidence for a nucleosome sliding mechanism. Mol. Cell12, 1333–1340 (2003). ArticleCASPubMed Google Scholar
Zofall, M., Persinger, J. & Bartholomew, B. Functional role of extranucleosomal DNA and the entry site of the nucleosome in chromatin remodeling by ISW2. Mol. Cell. Biol.24, 10047–10057 (2004). ArticleCASPubMedPubMed Central Google Scholar
Whitehouse, I., Stockdale, C., Flaus, A., Szczelkun, M.D. & Owen-Hughes, T. Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. Mol. Cell. Biol.23, 1935–1945 (2003). ArticleCASPubMedPubMed Central Google Scholar
Saha, A., Wittmeyer, J. & Cairns, B.R. Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes Dev.16, 2120–2134 (2002). ArticleCASPubMedPubMed Central Google Scholar
Amitani, I., Baskin, R.J. & Kowalczykowski, S.C. Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules. Mol. Cell23, 143–148 (2006). ArticleCASPubMed Google Scholar
Whitehouse, I. & Tsukiyama, T. Antagonistic forces that position nucleosomes in vivo. Nat. Struct. Mol. Biol.13, 633–640 (2006). ArticleCASPubMed Google Scholar
Flaus, A. & Owen-Hughes, T. Dynamic properties of nucleosomes during thermal and ATP-driven mobilization. Mol. Cell. Biol.23, 7767–7779 (2003). ArticleCASPubMedPubMed Central Google Scholar
Levenstein, M.E. & Kadonaga, J.T. Biochemical analysis of chromatin containing recombinant Drosophila core histones. J. Biol. Chem.277, 8749–8754 (2002). ArticleCASPubMed Google Scholar
Aalfs, J.D., Narlikar, G.J. & Kingston, R.E. Functional differences between the human ATP-dependent nucleosome remodeling proteins BRG1 and SNF2H. J. Biol. Chem.276, 34270–34278 (2001). ArticleCASPubMed Google Scholar
Luger, K., Rechsteiner, T.J. & Richmond, T.J. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol.304, 3–19 (1999). ArticleCASPubMed Google Scholar
Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W. & Richmond, T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol.319, 1097–1113 (2002). ArticleCASPubMed Google Scholar
Mukhopadhyay, J. et al. Translocation of sigma(70) with RNA polymerase during transcription: fluorescence resonance energy transfer assay for movement relative to DNA. Cell106, 453–463 (2001). ArticleCASPubMed Google Scholar
Narlikar, G.J., Phelan, M.L. & Kingston, R.E. Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol. Cell8, 1219–1230 (2001). ArticleCASPubMed Google Scholar