Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity (original) (raw)
References
Hanson, P.I. & Whiteheart, S.W. AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell Biol.6, 519–529 (2005). ArticleCAS Google Scholar
Erzberger, J.P. & Berger, J.M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct.35, 93–114 (2006). ArticleCAS Google Scholar
Hedges, S.B., Blair, J.E., Venturi, M.L. & Shoe, J.L. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol. Biol.4, 2 (2004). Article Google Scholar
Sanchez, Y. & Lindquist, S.L. HSP104 required for induced thermotolerance. Science248, 1112–1115 (1990). ArticleCAS Google Scholar
Squires, C.L., Pedersen, S., Ross, B.M. & Squires, C. ClpB is the Escherichia coli heat shock protein F84.1. J. Bacteriol.173, 4254–4262 (1991). ArticleCAS Google Scholar
Sanchez, Y., Taulien, J., Borkovich, K.A. & Lindquist, S. Hsp104 is required for tolerance to many forms of stress. EMBO J.11, 2357–2364 (1992). ArticleCAS Google Scholar
Parsell, D.A., Kowal, A.S., Singer, M.A. & Lindquist, S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature372, 475–478 (1994). ArticleCAS Google Scholar
Glover, J.R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell94, 73–82 (1998). ArticleCAS Google Scholar
Goloubinoff, P., Mogk, A., Zvi, A.P., Tomoyasu, T. & Bukau, B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA96, 13732–13737 (1999). ArticleCAS Google Scholar
Zolkiewski, M. ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. J. Biol. Chem.274, 28083–28086 (1999). ArticleCAS Google Scholar
Shorter, J. & Lindquist, S. Prions as adaptive conduits of memory and inheritance. Nat. Rev. Genet.6, 435–450 (2005). ArticleCAS Google Scholar
Lee, S. et al. The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell115, 229–240 (2003). ArticleCAS Google Scholar
Parsell, D.A., Kowal, A.S. & Lindquist, S. Saccharomyces cerevisiae Hsp104 protein. Purification and characterization of ATP-induced structural changes. J. Biol. Chem.269, 4480–4487 (1994). CASPubMed Google Scholar
Akoev, V., Gogol, E.P., Barnett, M.E. & Zolkiewski, M. Nucleotide-induced switch in oligomerization of the AAA+ ATPase ClpB. Protein Sci.13, 567–574 (2004). ArticleCAS Google Scholar
Lum, R., Tkach, J.M., Vierling, E. & Glover, J.R. Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J. Biol. Chem.279, 29139–29146 (2004). ArticleCAS Google Scholar
Schlieker, C. et al. Substrate recognition by the AAA+ chaperone ClpB. Nat. Struct. Mol. Biol.11, 607–615 (2004). ArticleCAS Google Scholar
Weibezahn, J. et al. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell119, 653–665 (2004). ArticleCAS Google Scholar
Barnett, M.E., Nagy, M., Kedzierska, S. & Zolkiewski, M. The amino-terminal domain of ClpB supports binding to strongly aggregated proteins. J. Biol. Chem.280, 34940–34945 (2005). ArticleCAS Google Scholar
Cashikar, A.G. et al. Defining a pathway of communication from the C-terminal peptide binding domain to the N-terminal ATPase domain in a AAA protein. Mol. Cell9, 751–760 (2002). ArticleCAS Google Scholar
Hattendorf, D.A. & Lindquist, S.L. Cooperative kinetics of both Hsp104 ATPase domains and interdomain communication revealed by AAA sensor-1 mutants. EMBO J.21, 12–21 (2002). ArticleCAS Google Scholar
Mogk, A. et al. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity. J. Biol. Chem.278, 17615–17624 (2003). ArticleCAS Google Scholar
Schirmer, E.C., Ware, D.M., Queitsch, C., Kowal, A.S. & Lindquist, S.L. Subunit interactions influence the biochemical and biological properties of Hsp104. Proc. Natl. Acad. Sci. USA98, 914–919 (2001). ArticleCAS Google Scholar
Schlee, S., Groemping, Y., Herde, P., Seidel, R. & Reinstein, J. The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites. J. Mol. Biol.306, 889–899 (2001). ArticleCAS Google Scholar
Shorter, J. & Lindquist, S. Navigating the ClpB channel to solution. Nat. Struct. Mol. Biol.12, 4–6 (2005). ArticleCAS Google Scholar
Schirmer, E.C., Homann, O.R., Kowal, A.S. & Lindquist, S. Dominant gain-of-function mutations in Hsp104p reveal crucial roles for the middle region. Mol. Biol. Cell15, 2061–2072 (2004). ArticleCAS Google Scholar
Shorter, J. & Lindquist, S. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science304, 1793–1797 (2004). ArticleCAS Google Scholar
Shorter, J. & Lindquist, S. Destruction or potentiation of different prions catalyzed by similar hsp104 remodeling activities. Mol. Cell23, 425–438 (2006). ArticleCAS Google Scholar
Haslbeck, M., Miess, A., Stromer, T., Walter, S. & Buchner, J. Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104. J. Biol. Chem.280, 23861–23868 (2005). ArticleCAS Google Scholar
Wickner, S. et al. A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc. Natl. Acad. Sci. USA91, 12218–12222 (1994). ArticleCAS Google Scholar
Wickner, S., Hoskins, J. & McKenney, K. Function of DnaJ and DnaK as chaperones in origin-specific DNA binding by RepA. Nature350, 165–167 (1991). ArticleCAS Google Scholar
Zietkiewicz, S., Lewandowska, A., Stocki, P. & Liberek, K. Hsp70 chaperone machine remodels protein aggregates at the initial step of Hsp70-Hsp100-dependent disaggregation. J. Biol. Chem.281, 7022–7029 (2006). ArticleCAS Google Scholar
Weber-Ban, E.U., Reid, B.G., Miranker, A.D. & Horwich, A.L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature401, 90–93 (1999). ArticleCAS Google Scholar
Martin, J. et al. Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate. Nature352, 36–42 (1991). ArticleCAS Google Scholar
Dietz, H. & Rief, M. Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proc. Natl. Acad. Sci. USA101, 16192–16197 (2004). ArticleCAS Google Scholar
Parsell, D.A., Sanchez, Y., Stitzel, J.D. & Lindquist, S. Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. Nature353, 270–273 (1991). ArticleCAS Google Scholar
Schirmer, E.C., Queitsch, C., Kowal, A.S., Parsell, D.A. & Lindquist, S. The ATPase activity of Hsp104, effects of environmental conditions and mutations. J. Biol. Chem.273, 15546–15552 (1998). ArticleCAS Google Scholar
Barnett, M.E. & Zolkiewski, M. Site-directed mutagenesis of conserved charged amino acid residues in ClpB from Escherichia coli. Biochemistry41, 11277–11283 (2002). ArticleCAS Google Scholar
Watanabe, Y.H., Motohashi, K. & Yoshida, M. Roles of the two ATP binding sites of ClpB from Thermus thermophilus. J. Biol. Chem.277, 5804–5809 (2002). ArticleCAS Google Scholar
Weibezahn, J., Schlieker, C., Bukau, B. & Mogk, A. Characterization of a trap mutant of the AAA+ chaperone ClpB. J. Biol. Chem.278, 32608–32617 (2003). ArticleCAS Google Scholar
Scheibel, T. & Lindquist, S.L. The role of conformational flexibility in prion propagation and maintenance for Sup35p. Nat. Struct. Biol.8, 958–962 (2001). ArticleCAS Google Scholar
Scheibel, T. et al. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl. Acad. Sci. USA100, 4527–4532 (2003). ArticleCAS Google Scholar
Hersch, G.L., Burton, R.E., Bolon, D.N., Baker, T.A. & Sauer, R.T. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine. Cell121, 1017–1027 (2005). ArticleCAS Google Scholar
Whiteheart, S.W. et al. N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J. Cell Biol.126, 945–954 (1994). ArticleCAS Google Scholar
Wang, Q., Song, C. & Li, C.C. Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions. J. Struct. Biol.146, 44–57 (2004). ArticleCAS Google Scholar
Mogk, A. et al. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J. Biol. Chem.278, 31033–31042 (2003). ArticleCAS Google Scholar
Schlee, S., Beinker, P., Akhrymuk, A. & Reinstein, J. A chaperone network for the resolubilization of protein aggregates: direct interaction of ClpB and DnaK. J. Mol. Biol.336, 275–285 (2004). ArticleCAS Google Scholar
Kedzierska, S., Chesnokova, L.S., Witt, S.N. & Zolkiewski, M. Interactions within the ClpB/DnaK bi-chaperone system from Escherichia coli. Arch. Biochem. Biophys.444, 61–65 (2005). ArticleCAS Google Scholar
Zietkiewicz, S., Krzewska, J. & Liberek, K. Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. J. Biol. Chem.279, 44376–44383 (2004). ArticleCAS Google Scholar
Martin, A., Baker, T.A. & Sauer, R.T. Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines. Nature437, 1115–1120 (2005). ArticleCAS Google Scholar
Hoskins, J.R. & Wickner, S. Two peptide sequences can function cooperatively to facilitate binding and unfolding by ClpA and degradation by ClpAP. Proc. Natl. Acad. Sci. USA103, 909–914 (2006). ArticleCAS Google Scholar
Hoskins, J.R., Kim, S.Y. & Wickner, S. Substrate recognition by the ClpA chaperone component of ClpAP protease. J. Biol. Chem.275, 35361–35367 (2000). ArticleCAS Google Scholar
Shacter, E. Organic extraction of Pi with isobutanol/toluene. Anal. Biochem.138, 416–420 (1984). ArticleCAS Google Scholar
Schwede, T., Kopp, J., Guex, N. & Peitsch, M.C. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res.31, 3381–3385 (2003). ArticleCAS Google Scholar