Prions as adaptive conduits of memory and inheritance (original) (raw)
James, L. C. & Tawfik, D. S. Conformational diversity and protein evolution — a 60-year-old hypothesis revisited. Trends Biochem. Sci.28, 361–368 (2003). ArticleCASPubMed Google Scholar
Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science216, 136–144 (1982). ArticleCASPubMed Google Scholar
Wickner, R. B. [_URE3_] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science264, 566–569 (1994). ArticleCASPubMed Google Scholar
Si, K., Lindquist, S. & Kandel, E. R. A neuronal isoform of the Aplysia CPEB has prion-like properties. Cell115, 879–891 (2003). This paper shows that ApCPEB can function as a prion in yeast, and that the prion conformation is the most active in stimulating translation of CPEB-regulated mRNA. Together with data from reference 99, the authors propose that the formation of ApCPEB prions in specifically stimulated synapses helps to maintain long-term synaptic changes that are associated with memory storage. ArticleCASPubMed Google Scholar
Prusiner, S. B. Prion Biology and Diseases (Cold Spring Harbor Laboratory Press, New York, 2004). Google Scholar
Uptain, S. M. & Lindquist, S. Prions as protein-based genetic elements. Annu. Rev. Microbiol.56, 703–741 (2002). ArticleCASPubMed Google Scholar
Wickner, R. B., Liebman, S. W. & Saupe, S. J. in Prion Biology and Diseases (ed. Prusiner, S. B.) 305–372 (Cold Spring Harbor Laboratory Press New York, 2004). Google Scholar
Chien, P., Weissman, J. S. & DePace, A. H. Emerging principles of conformation-based prion inheritance. Annu. Rev. Biochem.73, 617–656 (2004). ArticleCASPubMed Google Scholar
Alper, T., Cramp, W. A., Haig, D. A. & Clarke, M. C. Does the agent of scrapie replicate without nucleic acid? Nature214, 764–766 (1967). ArticleCASPubMed Google Scholar
Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature379, 339–343 (1996). ArticleCASPubMed Google Scholar
Safar, J. et al. Eight prion strains have PrPSc molecules with different conformations. Nature Med.4, 1157–1165 (1998). ArticleCASPubMed Google Scholar
Cox, B. S. [PSI], a cytoplasmic suppressor of super-suppression in yeast. Heredity20, 505–521 (1965). Article Google Scholar
Lacroute, F. Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol.106, 519–522 (1971). CASPubMedPubMed Central Google Scholar
Sondheimer, N. & Lindquist, S. Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell5, 163–172 (2000). ArticleCASPubMed Google Scholar
Santoso, A., Chien, P., Osherovich, L. Z. & Weissman, J. S. Molecular basis of a yeast prion species barrier. Cell100, 277–288 (2000). ArticleCASPubMed Google Scholar
Osherovich, L. Z., Cox, B. S., Tuite, M. F. & Weissman, J. S. Dissection and design of yeast prions. PLoS Biol.2, E86 (2004). ArticlePubMedPubMed Central Google Scholar
Coustou, V., Deleu, C., Saupe, S. & Begueret, J. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc. Natl Acad. Sci. USA94, 9773–9778 (1997). ArticleCASPubMedPubMed Central Google Scholar
Baskakov, I. V., Legname, G., Baldwin, M. A., Prusiner, S. B. & Cohen, F. E. Pathway complexity of prion protein assembly into amyloid. J. Biol. Chem.277, 21140–21148 (2002). ArticleCASPubMed Google Scholar
Glover, J. R. et al. Self-seeded fibres formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell89, 811–819 (1997). ArticleCASPubMed Google Scholar
Taylor, K. L., Cheng, N., Williams, R. W., Steven, A. C. & Wickner, R. B. Prion domain initiation of amyloid formation in vitro from native Ure2p. Science283, 1339–1343 (1999). ArticleCASPubMed Google Scholar
Maddelein, M. L., Dos Reis, S., Duvezin-Caubet, S., Coulary-Salin, B. & Saupe, S. J. Amyloid aggregates of the HET-s prion protein are infectious. Proc. Natl Acad. Sci. USA99, 7402–7407 (2002). ArticleCASPubMedPubMed Central Google Scholar
Patino, M. M., Liu, J. J., Glover, J. R. & Lindquist, S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science273, 622–626 (1996). ArticleCASPubMed Google Scholar
Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N. & Ter-Avanesyan, M. D. Propagation of the yeast prion-like [PSI+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J.15, 3127–3134 (1996). ArticleCASPubMedPubMed Central Google Scholar
Masison, D. C. & Wickner, R. B. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science270, 93–95 (1995). ArticleCASPubMed Google Scholar
Balguerie, A. et al. Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina. EMBO J.22, 2071–2081 (2003). ArticleCASPubMedPubMed Central Google Scholar
Speransky, V. V., Taylor, K. L., Edskes, H. K., Wickner, R. B. & Steven, A. C. Prion filament networks in [_URE3_] cells of Saccharomyces cerevisiae. J. Cell Biol.153, 1327–1336 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kimura, Y., Koitabashi, S. & Fujita, T. Analysis of yeast prion aggregates with amyloid-staining compound in vivo. Cell Struct. Funct.28, 187–193 (2003). ArticleCASPubMed Google Scholar
Kryndushkin, D. S., Alexandrov, I. M., Ter-Avanesyan, M. D. & Kushnirov, V. V. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J. Biol. Chem.278, 49636–49643 (2003). ArticleCASPubMed Google Scholar
King, C. Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature428, 319–323 (2004). ArticleCASPubMed Google Scholar
Serio, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science289, 1317–1321 (2000). ArticleCASPubMed Google Scholar
Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature428, 323–328 (2004). References 33 and 36 provide definitive evidence for the yeast prion hypothesis. They establish beyond doubt that [PSI+] is caused by self-replicating conformers of Sup35, and that distinct, stably propagating Sup35 conformations underpin different [PSI+] variants. ArticleCASPubMed Google Scholar
DePace, A. H. & Weissman, J. S. Origins and kinetic consequences of diversity in Sup35 yeast prion fibres. Nature Struct. Biol.9, 389–396 (2002). CASPubMed Google Scholar
Baxa, U., Speransky, V., Steven, A. C. & Wickner, R. B. Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proc. Natl Acad. Sci. USA99, 5253–5260 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kaneko, K. et al. A synthetic peptide initiates Gerstmann-Straussler-Scheinker (GSS) disease in transgenic mice. J. Mol. Biol.295, 997–1007 (2000). ArticleCASPubMed Google Scholar
Legname, G. et al. Strain-specified characteristics of mouse synthetic prions. Proc. Natl Acad. Sci. USA102, 2168–2173 (2005). References 37, 41 and 42 provide the initial foundations of definitive evidence for the mammalian prion hypothesis. ArticleCASPubMedPubMed Central Google Scholar
Edskes, H. K. & Wickner, R. B. Transmissible spongiform encephalopathies: prion proof in progress. Nature430, 977–979 (2004). ArticleCASPubMed Google Scholar
Goudsmit, J. et al. Evidence for and against the transmissibility of Alzheimer disease. Neurology30, 945–950 (1980). ArticleCASPubMed Google Scholar
Medawar, P. B. An Unsolved Problem of Biology (H. K. Lewis, London, 1952). Google Scholar
Chernoff, Y. O. et al. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol. Microbiol.35, 865–876 (2000). ArticleCASPubMed Google Scholar
Nakayashiki, T., Ebihara, K., Bannai, H. & Nakamura, Y. Yeast [PSI+] 'prions' that are crosstransmissible and susceptible beyond a species barrier through a quasi-prion state. Mol. Cell7, 1121–1130 (2001). ArticleCASPubMed Google Scholar
Baudin-Baillieu, A., Fernandez-Bellot, E., Reine, F., Coissac, E. & Cullin, C. Conservation of the prion properties of Ure2p through evolution. Mol. Biol. Cell14, 3449–3458 (2003). ArticleCASPubMedPubMed Central Google Scholar
Jensen, M. A., True, H. L., Chernoff, Y. O. & Lindquist, S. Molecular population genetics and evolution of a prion-like protein in Saccharomyces cerevisiae. Genetics159, 527–535 (2001). CASPubMedPubMed Central Google Scholar
Lindquist, S. Mad cows meet psi-chotic yeast: the expansion of the prion hypothesis. Cell89, 495–498 (1997). ArticleCASPubMed Google Scholar
Berson, J. F. et al. Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J. Cell Biol.161, 521–533 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mackay, J. P. et al. The hydrophobin EAS is largely unstructured in solution and functions by forming amyloid-like structures. Structure9, 83–91 (2001). ArticleCASPubMed Google Scholar
Kranenburg, O. et al. Tissue-type plasminogen activator is a multiligand cross-β structure receptor. Curr. Biol.12, 1833–1839 (2002). References 52–55 provide fascinating examples of beneficial amyloid conformers. ArticleCASPubMed Google Scholar
Gebbink, M. F., Voest, E. E. & Reijerkerk, A. Do antiangiogenic protein fragments have amyloid properties? Blood104, 1601–1605 (2004). ArticleCASPubMed Google Scholar
Nucifora, F. C. Jr. et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science291, 2423–2428 (2001). ArticleCASPubMed Google Scholar
Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science300, 486–489 (2003). ArticleCASPubMed Google Scholar
Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G. & Liebman, S. W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science268, 880–884 (1995). ArticleCASPubMed Google Scholar
Moriyama, H., Edskes, H. K. & Wickner, R. B. [URE3] prion propagation in Saccharomyces cerevisiae: requirement for chaperone Hsp104 and curing by overexpressed chaperone Ydj1p. Mol. Cell Biol.20, 8916–8922 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sondheimer, N., Lopez, N., Craig, E. A. & Lindquist, S. The role of Sis1 in the maintenance of the [RNQ+] prion. EMBO J.20, 2435–2442 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lopez, N., Aron, R. & Craig, E. A. Specificity of class II Hsp40 Sis1 in maintenance of yeast prion [RNQ+]. Mol. Biol. Cell.14, 1172–1181 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mallucci, G. et al. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science302, 871–874 (2003). This remarkable paper shows that prion diseases might be treated post infection by downregulating endogenous PrP. ArticleCASPubMed Google Scholar
Xia, H. et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nature Med.10, 816–820 (2004). ArticlePubMed Google Scholar
Komar, A. A. et al. Internal initiation drives the synthesis of Ure2 protein lacking the prion domain and affects [URE3] propagation in yeast cells. EMBO J.22, 1199–1209 (2003). ArticleCASPubMedPubMed Central Google Scholar
True, H. L. & Lindquist, S. L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature407, 477–483 (2000). ArticleCASPubMed Google Scholar
Uptain, S. M., Sawicki, G. J., Caughey, B. & Lindquist, S. Strains of [PSI+] are distinguished by their efficiencies of prion-mediated conformational conversion. EMBO J.20, 6236–6245 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E. S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature423, 241–254 (2003). ArticleCASPubMed Google Scholar
True, H. L., Berlin, I. & Lindquist, S. L. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature431, 184–187 (2004). Together with reference 67, this paper makes a compelling case for [PSI+] as a beneficial prion. ArticleCASPubMed Google Scholar
Eaglestone, S. S., Cox, B. S. & Tuite, M. F. Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J.18, 1974–1981 (1999). ArticleCASPubMedPubMed Central Google Scholar
Orr, H. A. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution52, 935–949 (1998). ArticlePubMed Google Scholar
Masel, J. & Bergman, A. The evolution of the evolvability properties of the yeast prion [PSI+]. Evolution Int. J. Org. Evolution57, 1498–1512 (2003). A convincing modelling study suggesting that [PSI+] has probably been maintained owing to the evolvability properties that it confers. Article Google Scholar
Resende, C. G., Outeiro, T. F., Sands, L., Lindquist, S. & Tuite, M. F. Prion protein gene polymorphisms in Saccharomyces cerevisiae. Mol. Microbiol.49, 1005–1017 (2003). ArticleCASPubMed Google Scholar
Harrison, P. et al. A small reservoir of disabled ORFs in the yeast genome and its implications for the dynamics of proteome evolution. J. Mol. Biol.316, 409–419 (2002). ArticleCASPubMed Google Scholar
Namy, O., Duchateau-Nguyen, G. & Rousset, J. P. Translational readthrough of the PDE2 stop codon modulates cAMP levels in Saccharomyces cerevisiae. Mol. Microbiol.43, 641–652 (2002). ArticleCASPubMed Google Scholar
Dalstra, H. J., Swart, K., Debets, A. J., Saupe, S. J. & Hoekstra, R. F. Sexual transmission of the [Het-s] prion leads to meiotic drive in Podospora anserina. Proc. Natl Acad. Sci. USA100, 6616–6621 (2003). ArticleCASPubMedPubMed Central Google Scholar
Derkatch, I. L., Bradley, M. E., Zhou, P., Chernoff, Y. O. & Liebman, S. W. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics147, 507–519 (1997). CASPubMedPubMed Central Google Scholar
Derkatch, I. L., Bradley, M. E., Hong, J. Y. & Liebman, S. W. Prions affect the appearance of other prions: the story of [PIN+]. Cell106, 171–182 (2001). ArticleCASPubMed Google Scholar
Bradley, M. E., Edskes, H. K., Hong, J. Y., Wickner, R. B. & Liebman, S. W. Interactions among prions and prion 'strains' in yeast. Proc. Natl Acad. Sci. USA99 (Suppl. 4), 16392–16399 (2002). ArticleCASPubMedPubMed Central Google Scholar
Salmon, J. M. & Barre, P. Improvement of nitrogen assimilation and fermentation kinetics under enological conditions by derepression of alternative nitrogen-assimilatory pathways in an industrial Saccharomyces cerevisiae strain. Appl. Environ. Microbiol.64, 3831–3837 (1998). CASPubMedPubMed Central Google Scholar
Crespo, J. L., Daicho, K., Ushimaru, T. & Hall, M. N. The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae. J. Biol. Chem.276, 34441–34444 (2001). ArticleCASPubMed Google Scholar
Bergman, A. & Siegal, M. L. Evolutionary capacitance as a general feature of complex gene networks. Nature424, 549–552 (2003). This remarkable study indicates that many, if not all, genes expose phenotypic variation when functionally compromised, and that the availability of loss-of-function mutations expedites adaptation to new phenotypic optima. Therefore, evolutionary capacitors might be more widespread than previously anticipated. ArticleCASPubMed Google Scholar
Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell102, 109–126 (2000). ArticleCASPubMed Google Scholar
Sangster, T. A., Lindquist, S. & Queitsch, C. Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays26, 348–362 (2004). ArticleCASPubMed Google Scholar
Michelitsch, M. D. & Weissman, J. S. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc. Natl Acad. Sci. USA97, 11910–11915 (2000). ArticleCASPubMedPubMed Central Google Scholar
Harrison, P. M. & Gerstein, M. A method to assess compositional bias in biological sequences and its application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes. Genome Biol.4, R40 (2003). ArticlePubMedPubMed Central Google Scholar
Flechsig, E. et al. Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. Neuron27, 399–408 (2000). ArticleCASPubMed Google Scholar
Liu, J. J. & Lindquist, S. Oligopeptide-repeat expansions modulate 'protein-only' inheritance in yeast. Nature400, 573–576 (1999). ArticleCASPubMed Google Scholar
Krishnan, R. & Lindquist, S. L. New structural insights on a yeast prion illuminate nucleation and strain diversity. Nature (in the press). This paper defines which regions of the Sup35 prion domain make intermolecular contacts in assembled prion fibres. It also describes how variations in these intermolecular contacts facilitate the construction of different prion variants.
Uversky, V. N. & Fink, A. L. Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim. Biophys. Acta1698, 131–153 (2004). ArticleCASPubMed Google Scholar
Si, K. et al. A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in Aplysia. Cell115, 893–904 (2003). This paper establishes that neurotransmitter cues upregulate ApCPEB at specific synapses, and that consequent ApCPEB-stimulated translation has a crucial role in the maintenance of synaptic growth associated with long-term facilitation. Together with reference 4, this paper makes a compelling argument that ApCPEB prions function in long-term memory formation. ArticleCASPubMed Google Scholar
Bailey, C. H., Kandel, E. R. & Si, K. The persistence of long-term memory: a molecular approach to self-sustaining changes in learning-induced synaptic growth. Neuron44, 49–57 (2004). ArticleCASPubMed Google Scholar
Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nature Rev. Neurosci.3, 175–190 (2002). ArticleCAS Google Scholar
Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science283, 381–387 (1999). ArticleCASPubMed Google Scholar
Thayer, M. J. et al. Positive autoregulation of the myogenic determination gene MyoD1. Cell58, 241–248 (1989). ArticleCASPubMed Google Scholar
Way, J. C. & Chalfie, M. The mec-3 gene of Caenorhabditis elegans requires its own product for maintained expression and is expressed in three neuronal cell types. Genes Dev.3, 1823–1833 (1989). ArticleCASPubMed Google Scholar
Mendez, R. & Richter, J. D. Translational control by CPEB: a means to the end. Nature Rev. Mol. Cell Biol.2, 521–529 (2001). ArticleCAS Google Scholar
Uversky, V. N., Gillespie, J. R. & Fink, A. L. Why are 'natively unfolded' proteins unstructured under physiologic conditions? Proteins41, 415–427 (2000). ArticleCASPubMed Google Scholar
Sajikumar, S. & Frey, J. U. Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol. Learn. Mem.82, 12–25 (2004). ArticleCASPubMed Google Scholar
Theis, M., Si, K. & Kandel, E. R. Two previously undescribed members of the mouse CPEB family of genes and their inducible expression in the principal cell layers of the hippocampus. Proc. Natl Acad. Sci. USA100, 9602–9607 (2003). ArticleCASPubMedPubMed Central Google Scholar
Li, L. & Lindquist, S. Creating a protein-based element of inheritance. Science287, 661–664 (2000). ArticleCASPubMed Google Scholar
Ter-Avanesyan, M. D. et al. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol. Microbiol.7, 683–692 (1993). ArticleCASPubMed Google Scholar
Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins. Annu. Rev. Genet.38, 413–443 (2004). ArticleCASPubMed Google Scholar
Kim, C. A., Gingery, M., Pilpa, R. M. & Bowie, J. U. The SAM domain of polyhomeotic forms a helical polymer. Nature Struct. Biol.9, 453–457 (2002). CASPubMed Google Scholar
Qiao, F. et al. Derepression by depolymerization; structural insights into the regulation of Yan by Mae. Cell118, 163–173 (2004). ArticleCASPubMed Google Scholar
Roberts, C. W. & Orkin, S. H. The SWI/SNF complex — chromatin and cancer. Nature Rev. Cancer4, 133–142 (2004). ArticleCAS Google Scholar
Sudarsanam, P., Iyer, V. R., Brown, P. O. & Winston, F. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA97, 3364–3369 (2000). ArticleCASPubMedPubMed Central Google Scholar
Roberts, B. T. & Wickner, R. B. Heritable activity: a prion that propagates by covalent autoactivation. Genes Dev.17, 2083–2087 (2003). ArticlePubMedPubMed Central Google Scholar
Collin, P., Beauregard, P. B., Elagoz, A. & Rokeach, L. A. A non-chromosomal factor allows viability of Schizosaccharomyces pombe lacking the essential chaperone calnexin. J. Cell Sci.117, 907–918 (2004). ArticleCASPubMed Google Scholar
Ball, A. J., Wong, D. K. & Elliott, J. J. Glucosamine resistance in yeast. I. A preliminary genetic analysis. Genetics84, 311–317 (1976). CASPubMedPubMed Central Google Scholar
Silar, P., Haedens, V., Rossignol, M. & Lalucque, H. Propagation of a novel cytoplasmic, infectious and deleterious determinant is controlled by translational accuracy in Podospora anserina. Genetics151, 87–95 (1999). CASPubMedPubMed Central Google Scholar
Talloczy, Z., Menon, S., Neigeborn, L. & Leibowitz, M. J. The [KIL-d] cytoplasmic genetic element of yeast results in epigenetic regulation of viral M double-stranded RNA gene expression. Genetics150, 21–30 (1998). CASPubMedPubMed Central Google Scholar
Volkov, K. V. et al. Novel non-Mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae. Genetics160, 25–36 (2002). CASPubMedPubMed Central Google Scholar
Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G. & Liebman, S. W. Genesis and variability of [_PSI_] prion factors in Saccharomyces cerevisiae. Genetics144, 1375–1386 (1996). CASPubMedPubMed Central Google Scholar
Ter-Avanesyan, M. D., Dagkesamanskaya, A. R., Kushnirov, V. V. & Smirnov, V. N. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [PSI+] in the yeast Saccharomyces cerevisiae. Genetics137, 671–676 (1994). CASPubMedPubMed Central Google Scholar
Liu, J. J., Sondheimer, N. & Lindquist, S. L. Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion [PSI+]. Proc. Natl Acad. Sci. USA99 (Suppl. 4), 16446–16453 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bagriantsev, S. & Liebman, S. W. Specificity of prion assembly in vivo. [PSI+] and [PIN+] form separate structures in yeast. J. Biol. Chem.279, 51042–51048 (2004). ArticleCASPubMed Google Scholar
Schlumpberger, M., Prusiner, S. B. & Herskowitz, I. Induction of distinct [URE3] yeast prion strains. Mol. Cell Biol.21, 7035–7046 (2001). ArticleCASPubMedPubMed Central Google Scholar
Osherovich, L. Z. & Weissman, J. S. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI+] prion. Cell106, 183–194 (2001). ArticleCASPubMed Google Scholar
Derkatch, I. L. et al. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+]prion in yeast and aggregation of Sup35 in vitro. Proc. Natl Acad. Sci. USA101, 12934–12939 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bradley, M. E. & Liebman, S. W. Destabilizing interactions among [PSI+] and [PIN+] yeast prion variants. Genetics165, 1675–1685 (2003). CASPubMedPubMed Central Google Scholar
Baker, H. F., Ridley, R. M., Duchen, L. W., Crow, T. J. & Bruton, C. J. Induction of β(A4)-amyloid in primates by injection of Alzheimer's disease brain homogenate. Comparison with transmission of spongiform encephalopathy. Mol. Neurobiol.8, 25–39 (1994). ArticleCASPubMed Google Scholar
Lundmark, K. et al. Transmissibility of systemic amyloidosis by a prion-like mechanism. Proc. Natl Acad. Sci. USA99, 6979–6984 (2002). ArticleCASPubMedPubMed Central Google Scholar
Xing, Y. et al. Induction of protein conformational change in mouse senile amyloidosis. J. Biol. Chem.277, 33164–33169 (2002). ArticleCASPubMed Google Scholar
Prinz, M. et al. Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature425, 957–962 (2003). ArticleCASPubMed Google Scholar
Tanaka, M., Chien, P., Yonekura, K. & Weissman, J. S. Mechanism of cross-species prion transmission; an infectious conformation compatible with two highly divergent yeast prion proteins. Cell121, 49–62 (2005). ArticleCASPubMed Google Scholar
Shorter, J. & Lindquist, S. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science304, 1793–1797 (2004). A delineation of how Hsp104 directly regulates Sup35 prion conformers. ArticleCASPubMed Google Scholar
Scheibel, T. et al. Conducting nanowires built by controlled self-assembly of amyloid fibres and selective metal deposition. Proc. Natl Acad. Sci. USA100, 4527–4532 (2003). ArticleCASPubMedPubMed Central Google Scholar
Masel, J., Jansen, V. A. & Nowak, M. A. Quantifying the kinetic parameters of prion replication. Biophys. Chem.77, 139–152 (1999). ArticleCASPubMed Google Scholar
Lee, D. H., Granja, J. R., Martinez, J. A., Severin, K. & Ghadiri, M. R. A self-replicating peptide. Nature382, 525–528 (1996). ArticleCASPubMed Google Scholar
Lee, D. H., Severin, K., Yokobayashi, Y. & Ghadiri, M. R. Emergence of symbiosis in peptide self-replication through a hypercyclic network. Nature390, 591–594 (1997). ArticleCASPubMed Google Scholar
Saghatelian, A., Yokobayashi, Y., Soltani, K. & Ghadiri, M. R. A chiroselective peptide replicator. Nature409, 797–801 (2001). References 140–142 describe a remarkable set of shortα-helical peptides that can undergo chemical and conformational replication, and which might even help to explain the origins of homochirality. Google Scholar
Pan, K. M. et al. Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins. Proc. Natl Acad. Sci. USA90, 10962–10966 (1993). ArticleCASPubMedPubMed Central Google Scholar
Wille, H., Zhang, G. F., Baldwin, M. A., Cohen, F. E. & Prusiner, S. B. Separation of scrapie prion infectivity from PrP amyloid polymers. J. Mol. Biol.259, 608–621 (1996). ArticleCASPubMed Google Scholar
Parsell, D. A., Kowal, A. S., Singer, M. A. & Lindquist, S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature372, 475–478 (1994). ArticleCASPubMed Google Scholar
Glover, J. R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell94, 73–82 (1998). ArticleCASPubMed Google Scholar
Wegrzyn, R. D., Bapat, K., Newnam, G. P., Zink, A. D. & Chernoff, Y. O. Mechanism of prion loss after Hsp104 inactivation in yeast. Mol. Cell Biol.21, 4656–4669 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hattendorf, D. A. & Lindquist, S. L. Analysis of the AAA sensor-2 motif in the C-terminal ATPase domain of Hsp104 with a site-specific fluorescent probe of nucleotide binding. Proc. Natl Acad. Sci. USA99, 2732–2737 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hattendorf, D. A. & Lindquist, S. L. Cooperative kinetics of both Hsp104 ATPase domains and interdomain communication revealed by AAA sensor-1 mutants. EMBO J.21, 12–21 (2002). ArticleCASPubMedPubMed Central Google Scholar
Grimminger, V., Richter, K., Imhof, A., Buchner, J. & Walter, S. The prion curing agent guanidinium chloride specifically inhibits ATP hydrolysis by Hsp104. J. Biol. Chem.279, 7378–7383 (2004). ArticleCASPubMed Google Scholar
Ripaud, L., Maillet, L. & Cullin, C. The mechanisms of [_URE3_] prion elimination demonstrate that large aggregates of Ure2p are dead-end products. EMBO J.22, 5251–5259 (2003). ArticleCASPubMedPubMed Central Google Scholar
Collins, S. R., Douglass, A., Vale, R. D. & Weissman, J. S. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol.2, e321 (2004). ArticleCASPubMedPubMed Central Google Scholar
Inoue, Y., Taguchi, H., Kishimoto, A. & Yoshida, M. Hsp104 binds to yeast Sup35 prion fibre but needs other factor(s) to sever it. J. Biol. Chem.279, 52319–52323 (2004). ArticleCASPubMed Google Scholar
Ferreira, P. C., Ness, F., Edwards, S. R., Cox, B. S. & Tuite, M. F. The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol. Microbiol.40, 1357–1369 (2001). ArticleCASPubMed Google Scholar
Shorter, J. & Lindquist, S. Navigating the ClpB channel to solution. Nature Struct. Mol. Biol.12, 4–6 (2005). ArticleCAS Google Scholar
Serio T. R. & Lindquist S. L. Protein-only inheritance in yeast: something to get [PSI+]-ched about. Trends Cell Biol.10, 98–105 (2000). ArticleCASPubMed Google Scholar
Leeds, P., Peltz, S. W., Jacobson, A. & Culbertson, M. R. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev.5, 2303–2314 (1991). ArticleCASPubMed Google Scholar
Frischmeyer, P. A. et al. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science295, 2258–2261 (2002). ArticleCASPubMed Google Scholar
Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science292, 1552–155 (2001). ArticleCASPubMed Google Scholar
Venkatraman, P., Wetzel, R., Tanaka, M., Nukina, N. & Goldberg, A. L. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol. Cell14, 95–104 (2004). ArticleCASPubMed Google Scholar
Castilla, J., Saa, P., Hetz, C. & Soto, C. In vitro generation of infectious scrapie prions. Cell121, 195–206 (2005). ArticleCASPubMed Google Scholar
Zou, W. Q. & Gambetti, P. From microbes to prions the final proof of the prion hypothesis. Cell121, 155–157 (2005). ArticleCASPubMed Google Scholar