NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity (original) (raw)

References

  1. Fasken, M.B. & Corbett, A.H. Process or perish: quality control in mRNA biogenesis. Nat. Struct. Mol. Biol. 12, 482–488 (2005).
    Article CAS PubMed Google Scholar
  2. Moore, M.J. From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514–1518 (2005).
    Article CAS PubMed Google Scholar
  3. Rehwinkel, J., Raes, J. & Izaurralde, E. Nonsense-mediated mRNA decay: target genes and functional diversification of effectors. Trends Biochem. Sci. 31, 639–646 (2006).
    Article CAS PubMed Google Scholar
  4. Conti, E. & Izaurralde, E. Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr. Opin. Cell Biol. 17, 316–325 (2005).
    Article CAS PubMed Google Scholar
  5. Behm-Ansmant, I. & Izaurralde, E. Quality control of gene expression: a stepwise assembly pathway for the surveillance complex that triggers nonsense-mediated mRNA decay. Genes Dev. 20, 391–398 (2006).
    Article CAS PubMed Google Scholar
  6. Amrani, N. et al. A faux 3′–UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432, 112–118 (2004).
    Article CAS PubMed Google Scholar
  7. Behm-Ansmant, I., Gatfield, D., Rehwinkel, J., Hilgers, V. & Izaurralde, E. A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay. EMBO J. 26, 1591–1601 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  8. Longman, D., Plasterk, R.H., Johnstone, I.L. & Caceres, J.F. Mechanistic insights and identification of two novel factors in the C. elegans NMD pathway. Genes Dev. 21, 1075–1085 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  9. Carter, M.S., Li, S. & Wilkinson, M.F. A splicing-dependent regulatory mechanism that detects translation signals. EMBO J. 15, 5965–5975 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  10. Nagy, E. & Maquat, L.E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23, 198–199 (1998).
    Article CAS PubMed Google Scholar
  11. Brocke, K.S., Neu-Yilik, G., Gehring, N.H., Hentze, M.W. & Kulozik, A.E. The human intronless melanocortin 4-receptor gene is NMD insensitive. Hum. Mol. Genet. 11, 331–335 (2002).
    Article CAS PubMed Google Scholar
  12. Le Hir, H., Izaurralde, E., Maquat, L.E. & Moore, M.J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19, 6860–6869 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  13. Ballut, L. et al. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat. Struct. Mol. Biol. 12, 861–869 (2005).
    Article CAS PubMed Google Scholar
  14. Tange, T.O., Shibuya, T., Jurica, M.S. & Moore, M.J. Biochemical analysis of the EJC reveals two new factors and a stable tetrameric protein core. RNA 11, 1869–1883 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  15. Andersen, C.B. et al. Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 313, 1968–1972 (2006).
    Article CAS PubMed Google Scholar
  16. Bono, F., Ebert, J., Lorentzen, E. & Conti, E. The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 126, 713–725 (2006).
    Article CAS PubMed Google Scholar
  17. Dostie, J. & Dreyfuss, G. Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr. Biol. 12, 1060–1067 (2002).
    Article CAS PubMed Google Scholar
  18. Lejeune, F., Ishigaki, Y., Li, X. & Maquat, L.E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J. 21, 3536–3545 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  19. Tange, T.O., Nott, A. & Moore, M.J. The ever-increasing complexities of the exon junction complex. Curr. Opin. Cell Biol. 16, 279–284 (2004).
    Article CAS PubMed Google Scholar
  20. Giorgi, C. & Moore, M.J. The nuclear nurture and cytoplasmic nature of localized mRNPs. Semin. Cell Dev. Biol. 18, 186–193 (2007).
    Article CAS PubMed Google Scholar
  21. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M.J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987–4997 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  22. Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science 293, 1836–1839 (2001).
    Article CAS PubMed Google Scholar
  23. Kashima, I. et al. Binding of a novel SMG-1–UPF1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers UPF1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev. 20, 355–367 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  24. Kim, V.N., Kataoka, N. & Dreyfuss, G. Role of the nonsense-mediated decay factor hUPF3 in the splicing-dependent exon-exon junction complex. Science 293, 1832–1836 (2001).
    Article CAS PubMed Google Scholar
  25. Gehring, N.H., Neu-Yilik, G., Schell, T., Hentze, M.W. & Kulozik, A.E. Y14 and hUPF3b form an NMD-activating complex. Mol. Cell 11, 939–949 (2003).
    Article CAS PubMed Google Scholar
  26. Gehring, N.H. et al. Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Mol. Cell 20, 65–75 (2005).
    Article CAS PubMed Google Scholar
  27. Kadlec, J., Izaurralde, E. & Cusack, S. The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3. Nat. Struct. Mol. Biol. 11, 330–337 (2004).
    Article CAS PubMed Google Scholar
  28. He, F., Brown, A.H. & Jacobson, A. UPF1p, Nmd2p, and UPF3p are interacting components of the yeast nonsense-mediated mRNA decay pathway. Mol. Cell. Biol. 17, 1580–1594 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  29. Serin, G., Gersappe, A., Black, J.D., Aronoff, R. & Maquat, L.E. Identification and characterization of human orthologues to Saccharomyces cerevisiae UPF2 protein and UPF3 protein (Caenorhabditis elegans SMG-4). Mol. Cell. Biol. 21, 209–223 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  30. Kadlec, J., Guilligay, D., Ravelli, R.B. & Cusack, S. Crystal structure of the UPF2-interacting domain of nonsense-mediated mRNA decay factor UPF1. RNA 12, 1817–1824 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  31. Applequist, S.E., Selg, M., Raman, C. & Jack, H.M. Cloning and characterization of HUPF1, a human homolog of the Saccharomyces cerevisiae nonsense mRNA-reducing UPF1 protein. Nucleic Acids Res. 25, 814–821 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  32. Weng, Y., Czaplinski, K. & Peltz, S.W. Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the UPF protein complex but not mRNA turnover. Mol. Cell. Biol. 16, 5491–5506 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  33. Cheng, Z., Muhlrad, D., Lim, M.K., Parker, R. & Song, H. Structural and functional insights into the human UPF1 helicase core. EMBO J. 26, 253–264 (2007).
    Article CAS PubMed Google Scholar
  34. Singleton, M.R., Dillingham, M.S. & Wigley, D.B. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50 (2007).
    Article CAS PubMed Google Scholar
  35. Czaplinski, K., Weng, Y., Hagan, K.W. & Peltz, S.W. Purification and characterization of the UPF1 protein: a factor involved in translation and mRNA degradation. RNA 1, 610–623 (1995).
    CAS PubMed PubMed Central Google Scholar
  36. Weng, Y., Czaplinski, K. & Peltz, S.W. Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the UPF1 protein. Mol. Cell. Biol. 16, 5477–5490 (1996b).
    Article CAS PubMed PubMed Central Google Scholar
  37. Bhattacharya, A. et al. Characterization of the biochemical properties of the human UPF1 gene product that is involved in nonsense-mediated mRNA decay. RNA 6, 1226–1235 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  38. Kunz, J.B., Neu-Yilik, G., Hentze, M.W., Kulozik, A.E. & Gehring, N.H. Functions of hUPF3a and hUPF3b in nonsense-mediated mRNA decay and translation. RNA 12, 1015–1022 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  39. He, F., Brown, A.H. & Jacobson, A. Interaction between Nmd2p and UPF1p is required for activity but not for dominant-negative inhibition of the nonsense-mediated mRNA decay pathway in yeast. RNA 2, 153–170 (1996).
    CAS PubMed PubMed Central Google Scholar
  40. Weng, Y., Czaplinski, K. & Peltz, S.W. ATP is a cofactor of the UPF1 protein that modulates its translation termination and RNA binding activities. RNA 4, 205–214 (1998).
    CAS PubMed PubMed Central Google Scholar
  41. Kim, J.L. et al. Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure 6, 89–100 (1998).
    Article CAS PubMed Google Scholar
  42. Shibuya, T., Tange, T.O., Stroupe, M.E. & Moore, M.J. Mutational analysis of human eIF4AIII identifies regions necessary for exon junction complex formation and nonsense-mediated mRNA decay. RNA 12, 360–374 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  43. Fribourg, S., Gatfield, D., Izaurralde, E. & Conti, E. A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat. Struct. Biol. 10, 433–439 (2003).
    Article CAS PubMed Google Scholar
  44. Forler, D. et al. An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat. Biotechnol. 21, 89–92 (2003).
    Article CAS PubMed Google Scholar
  45. Bono, F. et al. Molecular insights into the interaction of PYM with the Mago-Y14 core of the exon junction complex. EMBO Rep. 5, 304–310 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  46. Chandran, V. et al. Recognition and cooperation between the ATP-dependent RNA helicase RhlB and ribonuclease RNase E. J. Mol. Biol. 367, 113–132 (2007).
    Article CAS PubMed Google Scholar
  47. Czaplinski, K. et al. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 12, 1665–1677 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  48. Kim, Y.K., Furic, L., Desgroseillers, L. & Maquat, L.E. Mammalian Staufen1 recruits UPF1 to specific mRNA 3UTRs so as to elicit mRNA decay. Cell 120, 195–208 (2005).
    Article CAS PubMed Google Scholar
  49. Kaygun, H. & Marzluff, W.F. Regulated degradation of replication-dependent histone mRNAs requires both ATR and UPF1. Nat. Struct. Mol. Biol. 12, 794–800 (2005).
    Article CAS PubMed Google Scholar
  50. Chan, W.K. et al. An alternative branch of the nonsense-mediated decay pathway. EMBO J. 26, 1820–1830 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  51. Cordin, O., Tanner, N.K., Doere, M., Linder, P. & Banroques, J. The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity. EMBO J. 23, 2478–2487 (2004).
    Article CAS PubMed PubMed Central Google Scholar

Download references