The ER protein folding sensor UDP-glucose glycoprotein–glucosyltransferase modifies substrates distant to local changes in glycoprotein conformation (original) (raw)
References
Helenius, A. & Aebi, M. Intracellular functions of N-linked glycans. Science291, 2364–2369 (2001). ArticleCAS Google Scholar
Pelletier, M.F., Bergeron, J.J.M. & Thomas, D.Y. Molecular chaperone systems in the endoplasmic reticulum. In Molecular Chaperones in the Cell (ed. Lund, P.) 180–200 (Oxford Univ. Press, Oxford, UK, 2000). Google Scholar
Herscovics, A. Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim. Biophys. Acta.1473, 96–107 (1999). ArticleCAS Google Scholar
Kornfeld, R. & Kornfeld, S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem.54, 631–664 (1985). ArticleCAS Google Scholar
Grinna, L.S. & Robbins, P.W. Substrate specificities of rat liver microsomal glucosidases which process glycoproteins. J. Biol. Chem.255, 2255–2258 (1980). CASPubMed Google Scholar
Pelletier, M.F. et al. The heterodimeric structure of glucosidase II is required for its activity, solubility and localization in vivo. Glycobiology10, 815–827 (2000). ArticleCAS Google Scholar
Schrag, J., Procopio, D., Cygler, M., Thomas, D.Y. & Bergeron, J.J.M. Lectin control of protein folding and sorting in the secretory pathway. Trends Biochem. Sci.28, 49–57 (2003). ArticleCAS Google Scholar
Zapun, A. et al. Conformation independent binding of monoglucosylated ribonuclease B to calnexin. Cell88, 29–38 (1997). ArticleCAS Google Scholar
Zapun, A. et al. Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57. J. Biol. Chem.273, 6009–6012 (1998). ArticleCAS Google Scholar
Sousa, M.C., Ferrero-Garcia, M.A. & Parodi, A.J. Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. Biochemistry31, 97–105 (1992). ArticleCAS Google Scholar
Arnold, S.M. & Kaufman, R.J. The noncatalytic portion of human UDP-glucose:glycoprotein glucosytransferase I confers UDP-glucose binding and transferase function to the catalytic domain. J. Biol. Chem.278, 43320–43328 (2003). ArticleCAS Google Scholar
Sousa, M. & Parodi, A.J. The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. EMBO J.14, 4196–4203 (1995). ArticleCAS Google Scholar
Caramelo, J.J., Castro, O.A., Alonso, L.G., de Prat-Gay, G. & Parodi, A.J. UDP-Glc:glycoprotein glucosyltransferase recognizes structures and solvent accessible hydrophobic patches in molten globule-like folding intermediates. Proc. Natl. Acad. Sci. USA100, 86–91 (2003). ArticleCAS Google Scholar
Taylor, S.C., Thibault, P., Tessier, D.C., Bergeron, J.J.M. & Thomas, D.Y. Glycopeptide specificity of the secretory protein folding sensor UDP-glucose glycoprotein:glucosyltransferase. EMBO Rep.4, 405–411 (2003). ArticleCAS Google Scholar
Ritter, C. & Helenius, A. Recognition of local glycoprotein misfolding by the ER folding sensor UDP-glucose:glycoprotein glucosyltransferase. Nat. Struct. Biol.7, 278–280 (2000). ArticleCAS Google Scholar
Tessier, D.C. et al. Cloning and characterization of mammalian UDP-glucose glycoprotein: glucosyltransferase and the development of a specific substrate for this enzyme. Glycobiology10, 403–412 (2000). ArticleCAS Google Scholar
Sakon, J., Adney, W.S., Himmel, M.E., Thomas, S.R. & Karplus, P.A. Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochemistry35, 10648–10660 (1996). ArticleCAS Google Scholar
Basco, R.D. et al. Selective elongation of the oligosaccharide attached to the second potential glycosylation site of yeast exoglucanase: effects on the activity and properties of the enzyme. Biochem. J.304, 917–922 (1994). ArticleCAS Google Scholar
Ramirez, M., Hernandez, L.M. & Larriba, G. A similar protein portion for two exoglucanases secreted by Saccharomyces cerevisiae. Arch. Microbiol.151, 391–398 (1989). ArticleCAS Google Scholar
Bowler, B.E. et al. Destabilizing effects of replacing a surface lysine of cytochrome c with aromatic amino acids: implications for the denatured state. Biochemistry32, 183–190 (1993). ArticleCAS Google Scholar
Hammack, B. et al. The magnitude of changes in guanidine-HCl unfolding m-values in the protein, _iso_-1-cytochrome c, depends upon the substructure containing the mutation. Protein Sci.7, 1789–1795 (1998). ArticleCAS Google Scholar
Kimura, Y., Hess, D. & Sturm, A. The N-glycans of jack bean α-mannosidase. Structure, topology and function. Eur. J. Biochem.264, 168–75 (1999). ArticleCAS Google Scholar
Vernet, T., Dignard, D. & Thomas, D.Y. A family of yeast expression vectors. Gene52, 225–233 (1987). ArticleCAS Google Scholar
Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast10, 1793–1808 (1994). ArticleCAS Google Scholar
Chen, D.C., Yang, B.C. & Kuo, T.T. One-step transformation of yeast in stationary phase. Curr. Genet.21, 83–84 (1992). ArticleCAS Google Scholar
Szewczyk, B. & Summers, D.F. Preparative elution of proteins blotted to Immobilon membranes. Anal. Biochem.168, 48–53 (1988). ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCAS Google Scholar
Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991). Article Google Scholar
Cutfield, S.M. et al. The structure of the exo-β-(1,3)-glucanase from Candida albicans in native and bound forms: relationship between a pocket and groove in family 5 glycosyl hydrolases. J. Mol. Biol.294, 771–783 (1999). ArticleCAS Google Scholar
Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998). Article Google Scholar