Two distinct interaction motifs in amphiphysin bind two independent sites on the clathrin terminal domain β-propeller (original) (raw)

References

  1. Brodsky, F.M., Chen, C.Y., Knuehl, C., Towler, M.C. & Wakeham, D.E. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol. 17, 517–568 (2001).
    Article CAS Google Scholar
  2. Conner, S.D. & Schmid, S.L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).
    Article CAS Google Scholar
  3. Robinson, M.S. & Bonifacino, J.S. Adaptor-related proteins. Curr. Opin. Cell Biol. 13, 444–453 (2001).
    Article CAS Google Scholar
  4. Bonifacino, J.S. & Traub, L.M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72, 395–447 (2003).
    Article CAS Google Scholar
  5. Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 410, 231–235 (2001).
    Article CAS Google Scholar
  6. McMahon, H.T. Endocytosis: an assembly protein for clathrin cages. Curr. Biol. 9, R332–R335 (1999).
    Article CAS Google Scholar
  7. Slepnev, V.I. & De Camilli, P. Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat. Rev. Neurosci. 1, 161–172 (2000).
    Article CAS Google Scholar
  8. Lafer, E.M. Clathrin-protein interactions. Traffic 3, 513–520 (2002).
    Article CAS Google Scholar
  9. Wendland, B. Epsins: adaptors in endocytosis? Nat. Rev. Mol. Cell Biol. 3, 971–977 (2002).
    Article CAS Google Scholar
  10. Korolchuk, V. & Banting, G. Kinases in clathrin-mediated endocytosis. Biochem. Soc. Trans. 31, 857–860 (2003).
    Article CAS Google Scholar
  11. Traub, L.M. Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J. Cell Biol. 163, 203–208 (2003).
    Article CAS Google Scholar
  12. Evans, P.R. & Owen, D.J. Endocytosis and vesicle trafficking. Curr. Opin. Struct. Biol. 12, 814–821 (2002).
    Article CAS Google Scholar
  13. Kirchhausen, T. Clathrin. Annu. Rev. Biochem. 69, 699–727 (2000).
    Article CAS Google Scholar
  14. Ybe, J.A. et al. Clathrin self-assembly is mediated by a tandemly repeated superhelix. Nature 399, 371–375 (1999).
    Article CAS Google Scholar
  15. ter Haar, E., Musacchio, A., Harrison, S.C. & Kirchhausen, T. Atomic structure of clathrin: a β propeller terminal domain joins an a zigzag linker. Cell 95, 563–573 (1998).
    Article CAS Google Scholar
  16. Goodman, O.B. Jr., Krupnick, J.G., Gurevich, V.V., Benovic, J.L. & Keen, J.H. Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain. J. Biol. Chem. 272, 15017–15022 (1997).
    Article CAS Google Scholar
  17. ter Haar, E., Harrison, S.C. & Kirchhausen, T. Peptide-in-groove interactions link target proteins to the β-propeller of clathrin. Proc. Natl. Acad. Sci. USA 97, 1096–1100 (2000).
    Article CAS Google Scholar
  18. Ramjaun, A.R. & McPherson, P.S. Multiple amphiphysin II splice variants display differential clathrin binding: identification of two distinct clathrin-binding sites. J. Neurochem. 70, 2369–2376 (1998).
    Article CAS Google Scholar
  19. Slepnev, V.I., Ochoa, G.C., Butler, M.H. & De Camilli, P. Tandem arrangement of the clathrin and AP-2 binding domains in amphiphysin 1, and disruption of clathrin coat function mediated by amphiphysin fragments comprising these sites. J. Biol. Chem. 275, 17583–17589 (2000).
    Article CAS Google Scholar
  20. Drake, M.T. & Traub, L.M. Interaction of two structurally-distinct sequence types with the clathrin terminal domain β-propeller. J. Biol. Chem. 276, 28700–28709 (2001).
    Article CAS Google Scholar
  21. Owen, D.J. & Evans, P.R. A structural explanation for the recognition of tyrosine-based endocytotic signals. Science 282, 1327–1332 (1998).
    Article CAS Google Scholar
  22. Collins, B.M., Praefcke, G.J., Robinson, M.S. & Owen, D.J. Structural basis for binding of accessory proteins by the appendage domain of GGAs. Nat. Struct. Biol. 10, 607–613 (2003).
    Article CAS Google Scholar
  23. Miller, G.J., Mattera, R., Bonifacino, J.S. & Hurley, J.H. Recognition of accessory protein motifs by the γ-adaptin ear domain of GGA3. Nat. Struct. Biol. 10, 599–606 (2003).
    Article CAS Google Scholar
  24. Smith, T.F., Gaitatzes, C., Saxena, K. & Neer, E.J. The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci. 24, 181–185 (1999).
    Article CAS Google Scholar
  25. Orlicky, S., Tang, X., Willems, A., Tyers, M. & Sicheri, F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112, 243–256 (2003).
    Article CAS Google Scholar
  26. Scheele, U. et al. Molecular and functional characterization of clathrin and AP-2 binding determinants within a disordered domain of auxilin. J. Biol. Chem. 278, 25357–25368 (2003).
    Article CAS Google Scholar
  27. Lichte, B., Veh, R.W., Meyer, H.E. & Kilimann, M.W. Amphiphysin, a novel protein associated with synaptic vesicles. EMBO J. 11, 2521–2530 (1992).
    Article CAS Google Scholar
  28. De Camilli, P. et al. The synaptic vesicle-associated protein amphiphysin is the 128-kD autoantigen of Stiff-Man syndrome with breast cancer. J. Exp. Med. 178, 2219–2223 (1993).
    Article CAS Google Scholar
  29. Sakamuro, D., Elliott, K.J., Wechsler-Reya, R. & Prendergast, G.C. BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat. Genet. 14, 69–77 (1996).
    Article CAS Google Scholar
  30. Leprince, C. et al. A new member of the amphiphysin family connecting endocytosis and signal transduction pathways. J. Biol. Chem. 272, 15101–15105 (1997).
    Article CAS Google Scholar
  31. Ramjaun, A.R., Micheva, K.D., Bouchelet, I. & McPherson, P.S. Identification and characterization of a nerve terminal-enriched amphiphysin isoform. J. Biol. Chem. 272, 16700–16706 (1997).
    Article CAS Google Scholar
  32. Zhang, B. & Zelhof, A.C. Amphiphysins: raising the BAR for synaptic vesicle recycling and membrane dynamics. Traffic 3, 452–460 (2002).
    Article CAS Google Scholar
  33. Ramjaun, A.R., Philie, J., de Heuvel, E. & McPherson, P.S. The N terminus of amphiphysin II mediates dimerization and plasma membrane targeting. J. Biol. Chem. 274, 19785–19791 (1999).
    Article CAS Google Scholar
  34. Takei, K., Slepnev, V.I., Haucke, V. & De Camilli, P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat. Cell Biol. 1, 33–39 (1999).
    Article CAS Google Scholar
  35. Razzaq, A. et al. Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes Dev. 15, 2967–2979 (2001).
    Article CAS Google Scholar
  36. Peter, B.J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004).
    Article CAS Google Scholar
  37. David, C., McPherson, P.S., Mundigl, O. & De Camilli, P. A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc. Natl. Acad. Sci. USA 93, 331–335 (1996).
    Article CAS Google Scholar
  38. Owen, D.J. et al. Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation. EMBO J. 17, 5273–5285 (1998).
    Article CAS Google Scholar
  39. Howard, L., Nelson, K.K., Maciewicz, R.A. & Blobel, C.P. Interaction of the metalloprotease disintegrins MDC9 and MDC15 with two SH3 domain-containing proteins, endophilin I and SH3PX1. J. Biol. Chem. 274, 31693–31699 (1999).
    Article CAS Google Scholar
  40. Lundmark, R. & Carlsson, S.R. The β-appendages of the four adaptor-protein (AP) complexes: structure and binding properties, and identification of sorting nexin 9 as an accessory protein to AP-2. Biochem. J. 362, 597–607 (2002).
    Article CAS Google Scholar
  41. Macaulay, S.L. et al. Insulin stimulates movement of sorting nexin 9 between cellular compartments-A putative role mediating cell surface receptor expression and insulin action. Biochem. J., 376, 123–134 (2003).
    Article CAS Google Scholar
  42. Lundmark, R. & Carlsson, S.R. Sorting nexin 9 participates in clathrin-mediated endocytosis through interactions with the core components. J. Biol. Chem. 278, 46772–46781 (2003).
    Article CAS Google Scholar
  43. Dunker, A.K., Brown, C.J., Lawson, J.D., Iakoucheva, L.M. & Obradovic, Z. Intrinsic disorder and protein function. Biochemistry 41, 6573–6582 (2002).
    Article CAS Google Scholar
  44. Owen, D.J. et al. A structural explanation for the binding of multiple ligands by the α-adaptin appendage domain. Cell 97, 805–815 (1999).
    Article CAS Google Scholar
  45. Leslie, A.G.W. Recent changes to MOSFLM package for processing film and image plate data. Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography Vol. 26 (Daresbury Laboratory, Warrington, UK, 1992).
    Google Scholar
  46. Collaborative Computational Project, the CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).
  47. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
    Article Google Scholar
  48. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).
    Article CAS Google Scholar
  49. Segel, I.H. Biochemical Calculations 2nd edn, 150–159 (Wiley, New York, 1976).
    Google Scholar
  50. Mishra, S.K. et al. Disabled-2 exhibits the properties of a cargo-selective endocytic clathrin adaptor. EMBO J. 21, 4915–4926 (2002).
    Article CAS Google Scholar

Download references