Two distinct interaction motifs in amphiphysin bind two independent sites on the clathrin terminal domain β-propeller (original) (raw)
References
Brodsky, F.M., Chen, C.Y., Knuehl, C., Towler, M.C. & Wakeham, D.E. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol.17, 517–568 (2001). ArticleCAS Google Scholar
Conner, S.D. & Schmid, S.L. Regulated portals of entry into the cell. Nature422, 37–44 (2003). ArticleCAS Google Scholar
Robinson, M.S. & Bonifacino, J.S. Adaptor-related proteins. Curr. Opin. Cell Biol.13, 444–453 (2001). ArticleCAS Google Scholar
Bonifacino, J.S. & Traub, L.M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem.72, 395–447 (2003). ArticleCAS Google Scholar
Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature410, 231–235 (2001). ArticleCAS Google Scholar
McMahon, H.T. Endocytosis: an assembly protein for clathrin cages. Curr. Biol.9, R332–R335 (1999). ArticleCAS Google Scholar
Slepnev, V.I. & De Camilli, P. Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat. Rev. Neurosci.1, 161–172 (2000). ArticleCAS Google Scholar
Wendland, B. Epsins: adaptors in endocytosis? Nat. Rev. Mol. Cell Biol.3, 971–977 (2002). ArticleCAS Google Scholar
Korolchuk, V. & Banting, G. Kinases in clathrin-mediated endocytosis. Biochem. Soc. Trans.31, 857–860 (2003). ArticleCAS Google Scholar
Traub, L.M. Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J. Cell Biol.163, 203–208 (2003). ArticleCAS Google Scholar
Evans, P.R. & Owen, D.J. Endocytosis and vesicle trafficking. Curr. Opin. Struct. Biol.12, 814–821 (2002). ArticleCAS Google Scholar
Ybe, J.A. et al. Clathrin self-assembly is mediated by a tandemly repeated superhelix. Nature399, 371–375 (1999). ArticleCAS Google Scholar
ter Haar, E., Musacchio, A., Harrison, S.C. & Kirchhausen, T. Atomic structure of clathrin: a β propeller terminal domain joins an a zigzag linker. Cell95, 563–573 (1998). ArticleCAS Google Scholar
Goodman, O.B. Jr., Krupnick, J.G., Gurevich, V.V., Benovic, J.L. & Keen, J.H. Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain. J. Biol. Chem.272, 15017–15022 (1997). ArticleCAS Google Scholar
ter Haar, E., Harrison, S.C. & Kirchhausen, T. Peptide-in-groove interactions link target proteins to the β-propeller of clathrin. Proc. Natl. Acad. Sci. USA97, 1096–1100 (2000). ArticleCAS Google Scholar
Ramjaun, A.R. & McPherson, P.S. Multiple amphiphysin II splice variants display differential clathrin binding: identification of two distinct clathrin-binding sites. J. Neurochem.70, 2369–2376 (1998). ArticleCAS Google Scholar
Slepnev, V.I., Ochoa, G.C., Butler, M.H. & De Camilli, P. Tandem arrangement of the clathrin and AP-2 binding domains in amphiphysin 1, and disruption of clathrin coat function mediated by amphiphysin fragments comprising these sites. J. Biol. Chem.275, 17583–17589 (2000). ArticleCAS Google Scholar
Drake, M.T. & Traub, L.M. Interaction of two structurally-distinct sequence types with the clathrin terminal domain β-propeller. J. Biol. Chem.276, 28700–28709 (2001). ArticleCAS Google Scholar
Owen, D.J. & Evans, P.R. A structural explanation for the recognition of tyrosine-based endocytotic signals. Science282, 1327–1332 (1998). ArticleCAS Google Scholar
Collins, B.M., Praefcke, G.J., Robinson, M.S. & Owen, D.J. Structural basis for binding of accessory proteins by the appendage domain of GGAs. Nat. Struct. Biol.10, 607–613 (2003). ArticleCAS Google Scholar
Miller, G.J., Mattera, R., Bonifacino, J.S. & Hurley, J.H. Recognition of accessory protein motifs by the γ-adaptin ear domain of GGA3. Nat. Struct. Biol.10, 599–606 (2003). ArticleCAS Google Scholar
Smith, T.F., Gaitatzes, C., Saxena, K. & Neer, E.J. The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci.24, 181–185 (1999). ArticleCAS Google Scholar
Orlicky, S., Tang, X., Willems, A., Tyers, M. & Sicheri, F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell112, 243–256 (2003). ArticleCAS Google Scholar
Scheele, U. et al. Molecular and functional characterization of clathrin and AP-2 binding determinants within a disordered domain of auxilin. J. Biol. Chem.278, 25357–25368 (2003). ArticleCAS Google Scholar
Lichte, B., Veh, R.W., Meyer, H.E. & Kilimann, M.W. Amphiphysin, a novel protein associated with synaptic vesicles. EMBO J.11, 2521–2530 (1992). ArticleCAS Google Scholar
De Camilli, P. et al. The synaptic vesicle-associated protein amphiphysin is the 128-kD autoantigen of Stiff-Man syndrome with breast cancer. J. Exp. Med.178, 2219–2223 (1993). ArticleCAS Google Scholar
Sakamuro, D., Elliott, K.J., Wechsler-Reya, R. & Prendergast, G.C. BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat. Genet.14, 69–77 (1996). ArticleCAS Google Scholar
Leprince, C. et al. A new member of the amphiphysin family connecting endocytosis and signal transduction pathways. J. Biol. Chem.272, 15101–15105 (1997). ArticleCAS Google Scholar
Ramjaun, A.R., Micheva, K.D., Bouchelet, I. & McPherson, P.S. Identification and characterization of a nerve terminal-enriched amphiphysin isoform. J. Biol. Chem.272, 16700–16706 (1997). ArticleCAS Google Scholar
Zhang, B. & Zelhof, A.C. Amphiphysins: raising the BAR for synaptic vesicle recycling and membrane dynamics. Traffic3, 452–460 (2002). ArticleCAS Google Scholar
Ramjaun, A.R., Philie, J., de Heuvel, E. & McPherson, P.S. The N terminus of amphiphysin II mediates dimerization and plasma membrane targeting. J. Biol. Chem.274, 19785–19791 (1999). ArticleCAS Google Scholar
Takei, K., Slepnev, V.I., Haucke, V. & De Camilli, P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat. Cell Biol.1, 33–39 (1999). ArticleCAS Google Scholar
Razzaq, A. et al. Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes Dev.15, 2967–2979 (2001). ArticleCAS Google Scholar
Peter, B.J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science303, 495–499 (2004). ArticleCAS Google Scholar
David, C., McPherson, P.S., Mundigl, O. & De Camilli, P. A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc. Natl. Acad. Sci. USA93, 331–335 (1996). ArticleCAS Google Scholar
Owen, D.J. et al. Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation. EMBO J.17, 5273–5285 (1998). ArticleCAS Google Scholar
Howard, L., Nelson, K.K., Maciewicz, R.A. & Blobel, C.P. Interaction of the metalloprotease disintegrins MDC9 and MDC15 with two SH3 domain-containing proteins, endophilin I and SH3PX1. J. Biol. Chem.274, 31693–31699 (1999). ArticleCAS Google Scholar
Lundmark, R. & Carlsson, S.R. The β-appendages of the four adaptor-protein (AP) complexes: structure and binding properties, and identification of sorting nexin 9 as an accessory protein to AP-2. Biochem. J.362, 597–607 (2002). ArticleCAS Google Scholar
Macaulay, S.L. et al. Insulin stimulates movement of sorting nexin 9 between cellular compartments-A putative role mediating cell surface receptor expression and insulin action. Biochem. J., 376, 123–134 (2003). ArticleCAS Google Scholar
Lundmark, R. & Carlsson, S.R. Sorting nexin 9 participates in clathrin-mediated endocytosis through interactions with the core components. J. Biol. Chem.278, 46772–46781 (2003). ArticleCAS Google Scholar
Dunker, A.K., Brown, C.J., Lawson, J.D., Iakoucheva, L.M. & Obradovic, Z. Intrinsic disorder and protein function. Biochemistry41, 6573–6582 (2002). ArticleCAS Google Scholar
Owen, D.J. et al. A structural explanation for the binding of multiple ligands by the α-adaptin appendage domain. Cell97, 805–815 (1999). ArticleCAS Google Scholar
Leslie, A.G.W. Recent changes to MOSFLM package for processing film and image plate data. Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography Vol. 26 (Daresbury Laboratory, Warrington, UK, 1992). Google Scholar
Collaborative Computational Project, the CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).
Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991). Article Google Scholar
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D53, 240–255 (1997). ArticleCAS Google Scholar
Segel, I.H. Biochemical Calculations 2nd edn, 150–159 (Wiley, New York, 1976). Google Scholar
Mishra, S.K. et al. Disabled-2 exhibits the properties of a cargo-selective endocytic clathrin adaptor. EMBO J.21, 4915–4926 (2002). ArticleCAS Google Scholar