The Mad2 spindle checkpoint protein has two distinct natively folded states (original) (raw)

References

  1. Nasmyth, K. Segregating sister genomes: the molecular biology of chromosome separation. Science 297, 559–565 (2002).
    Article CAS Google Scholar
  2. Cleveland, D.W., Mao, Y. & Sullivan, K.F. Centromeres and kinetochores. From epigenetics to mitotic checkpoint signaling. Cell 112, 407–421 (2003).
    Article CAS Google Scholar
  3. Yu, H. Regulation of APC-Cdc20 by the spindle checkpoint. Curr. Opin. Cell Biol. 14, 706–714 (2002).
    Article CAS Google Scholar
  4. Shah, J.V. & Cleveland, D.W. Waiting for anaphase: Mad2 and the spindle assembly checkpoint. Cell 103, 997–1000 (2000).
    Article CAS Google Scholar
  5. Tang, Z., Bharadwaj, R., Li, B. & Yu, H. Mad2-independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev. Cell 1, 227–237 (2001).
    Article CAS Google Scholar
  6. Sudakin, V., Chan, G.K. & Yen, T.J. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol. 154, 925–936 (2001).
    Article CAS Google Scholar
  7. Fang, G. Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol. Biol. Cell 13, 755–766 (2002).
    Article CAS Google Scholar
  8. Chen, R.H. BubR1 is essential for kinetochore localization of other spindle checkpoint proteins and its phosphorylation requires Mad1. J. Cell Biol. 158, 487–496 (2002).
    Article CAS Google Scholar
  9. Millband, D.N. & Hardwick, K.G. Fission yeast Mad3p is required for Mad2p to inhibit the anaphase-promoting complex and localizes to kinetochores in a Bub1p-, Bub3p-, and Mph1p-dependent manner. Mol. Cell. Biol. 22, 2728–2742 (2002).
    Article CAS Google Scholar
  10. Chen, R.H., Brady, D.M., Smith, D., Murray, A.W. & Hardwick, K.G. The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins. Mol. Biol. Cell 10, 2607–2618 (1999).
    Article CAS Google Scholar
  11. Luo, X., Tang, Z., Rizo, J. & Yu, H. The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20. Mol. Cell 9, 59–71 (2002).
    Article Google Scholar
  12. Chung, E. & Chen, R.H. Spindle checkpoint requires Mad1-bound and Mad1-free Mad2. Mol. Biol. Cell 13, 1501–1511 (2002).
    Article CAS Google Scholar
  13. Habu, T., Kim, S.H., Weinstein, J. & Matsumoto, T. Identification of a MAD2-binding protein, CMT2, and its role in mitosis. EMBO J. 21, 6419–6428 (2002).
    Article CAS Google Scholar
  14. Wassmann, K., Liberal, V. & Benezra, R. Mad2 phosphorylation regulates its association with Mad1 and the APC/C. EMBO J. 22, 797–806 (2003).
    Article CAS Google Scholar
  15. Sironi, L. et al. Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a 'safety belt' binding mechanism for the spindle checkpoint. EMBO J. 21, 2496–2506 (2002).
    Article CAS Google Scholar
  16. Luo, X. et al. Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20. Nat. Struct. Biol. 7, 224–229 (2000).
    Article CAS Google Scholar
  17. Musacchio, A. & Hardwick, K.G. The spindle checkpoint: structural insights into dynamic signaling. Nat. Rev. Mol. Cell Biol. 3, 731–741 (2002).
    Article CAS Google Scholar
  18. Sironi, L. et al. Mad2 binding to Mad1 and Cdc20, rather than oligomerization, is required for the spindle checkpoint. EMBO J. 20, 6371–6382 (2001).
    Article CAS Google Scholar
  19. Fang, G., Yu, H. & Kirschner, M.W. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 12, 1871–1883 (1998).
    Article CAS Google Scholar
  20. Canman, J.C., Salmon, E.D. & Fang, G. Inducing precocious anaphase in cultured mammalian cells. Cell Motil. Cytoskeleton 52, 61–65 (2002).
    Article Google Scholar
  21. Altmann, F., Staudacher, E., Wilson, I.B. & Marz, L. Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj. J. 16, 109–123 (1999).
    Article CAS Google Scholar
  22. Dhalluin, C. et al. Structural basis of SNT PTB domain interactions with distinct neurotrophic receptors. Mol. Cell 6, 921–929 (2000).
    Article CAS Google Scholar
  23. Bullough, P.A., Hughson, F.M., Skehel, J.J. & Wiley, D.C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371, 37–43 (1994).
    Article CAS Google Scholar
  24. Sauter, N.K., Mau, T., Rader, S.D. & Agard, D.A. Structure of α-lytic protease complexed with its pro region. Nat. Struct. Biol. 5, 945–950 (1998).
    Article CAS Google Scholar
  25. Barrientos, L.G. et al. The domain-swapped dimer of cyanovirin-N is in a metastable folded state: reconciliation of X-ray and NMR structures. Structure 10, 673–686 (2002).
    Article CAS Google Scholar
  26. Khazanovich, N., Bateman, K., Chernaia, M., Michalak, M. & James, M. Crystal structure of the yeast cell-cycle control protein, p13suc1, in a strand-exchanged dimer. Structure 4, 299–309 (1996).
    Article CAS Google Scholar
  27. Ye, S. & Goldsmith, E.J. Serpins and other covalent protease inhibitors. Curr. Opin. Struct. Biol. 11, 740–745 (2001).
    Article CAS Google Scholar
  28. Volkman, B.F., Lipson, D., Wemmer, D.E. & Kern, D. Two-state allosteric behavior in a single-domain signaling protein. Science 291, 2429–2433 (2001).
    Article CAS Google Scholar
  29. James, L.C., Roversi, P. & Tawfik, D.S. Antibody multispecificity mediated by conformational diversity. Science 299, 1362–1367 (2003).
    Article CAS Google Scholar
  30. Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383 (1998).
    Article CAS Google Scholar
  31. Mottonen, J. et al. Structural basis of latency in plasminogen activator inhibitor-1. Nature 355, 270–273 (1992).
    Article CAS Google Scholar
  32. Howell, B.J., Hoffman, D.B., Fang, G., Murray, A.W. & Salmon, E.D. Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J. Cell Biol. 150, 1233–1250 (2000).
    Article CAS Google Scholar
  33. Hardwick, K.G., Weiss, E., Luca, F.C., Winey, M. & Murray, A.W. Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science 273, 953–956 (1996).
    Article CAS Google Scholar
  34. Seeley, T.W., Wang, L. & Zhen, J.Y. Phosphorylation of human MAD1 by the BUB1 kinase in vitro . Biochem. Biophys. Res. Commun. 257, 589–595 (1999).
    Article CAS Google Scholar
  35. Clore, G.M. & Gronenborn, A.M. NMR structure determination of proteins and protein complexes larger than 20 kDa. Curr. Opin. Chem. Biol. 2, 564–570 (1998).
    Article CAS Google Scholar
  36. Gardner, K.H. & Kay, L.E. The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu. Rev. Biophys. Biomol. Struct. 27, 357–406 (1998).
    Article CAS Google Scholar
  37. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).
    Article CAS Google Scholar
  38. Brünger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).
    Article Google Scholar
  39. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).
    Article CAS Google Scholar
  40. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).
    Article Google Scholar
  41. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).
    Article CAS Google Scholar
  42. Kuzmic, P. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV Proteinase. Anal. Biochem. 237, 260–273 (1996).
    Article CAS Google Scholar

Download references