The spindle checkpoint: structural insights into dynamic signalling (original) (raw)
Li, R. & Murray, A. W. Feedback control of mitosis in budding yeast. Cell66, 519–531 (1991). CASPubMed Google Scholar
Hoyt, M. A., Totis, L. & Roberts, B. T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell66, 507–517 (1991).Refs1and2describe genetic screens that led to the first molecular identification of spindle-checkpoint components. CASPubMed Google Scholar
Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet.35, 673–745 (2001). CASPubMed Google Scholar
Rieder, C. L. & Salmon, E. D. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol.8, 310–318 (1998). CASPubMedPubMed Central Google Scholar
Pidoux, A. L. & Allshire, R. C. Centromeres: getting a grip of chromosomes. Curr. Opin. Cell Biol.12, 308–319 (2000). CASPubMed Google Scholar
Hwang, L. H. et al. Budding yeast Cdc20: a target of the spindle checkpoint. Science279, 1041–1044 (1998).Refs6and7show thatCDC20mutants that are resistant to the checkpoint cannot bind Mad2, establishing Cdc20 as the target of the spindle checkpoint. Furthermore, ref.6describes a set of mutual binding dependencies between budding-yeast checkpoint proteins, including an absolute requirement for Mad1 for Mad2–Cdc20-complex formation. CASPubMed Google Scholar
Kim, S. H. et al. Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science279, 1045–1047 (1998). CASPubMed Google Scholar
Peters, J. M. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell9, 931–943 (2002). CASPubMed Google Scholar
Rieder, C. L., Cole, R. W., Khodjakov, A. & Sluder, G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell Biol.130, 941–948 (1995).This paper identifies the kinetochores of unattached chromosomes as the site of production of the checkpoint signal. PtK1 cells are followed by video microscopy before and after specific chromosomal regions are destroyed by laser irradiation. The checkpoint is relieved after the centromere is destroyed on the last mono-oriented chromosome. Thus, the checkpoint mechanism monitors an inhibitor of anaphase produced by unattached kinetochores. CASPubMed Google Scholar
Li, X. & Nicklas, R. B. Mitotic forces control a cell-cycle checkpoint. Nature373, 630–632 (1995).The classic demonstration that lack of tension at kinetochores can activate the spindle checkpoint. In 10% of praying-mantis spermatocytes, a free X chromosome delays anaphase by 5–6 h. Applying tension to this X chromosome with a micromanipulation needle is enough to relieve the checkpoint delay and to induce anaphase. CASPubMed Google Scholar
Chen, R. H., Waters, J. C., Salmon, E. D. & Murray, A. W. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science274, 242–246 (1996). CASPubMed Google Scholar
Li, Y. & Benezra, R. Identification of a human mitotic checkpoint gene: hsMAD2. Science274, 246–248 (1996).Refs12and13provided the first demonstration of the kinetochore localization of a defined checkpoint protein. CASPubMed Google Scholar
Maney, T., Ginkel, L. M., Hunter, A. W. & Wordeman, L. The kinetochore of higher eucaryotes: a molecular view. Int. Rev. Cytol.194, 67–131 (2000). CASPubMed Google Scholar
Brunet, S. & Vernos, I. Chromosome motors on the move. From motion to spindle checkpoint activity. EMBO Rep.2, 669–673 (2001). CASPubMedPubMed Central Google Scholar
Chan, G. K. T., Schaar, B. T. & Yen, T. J. Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1. J. Cell Biol.143, 49–63 (1998). CASPubMedPubMed Central Google Scholar
Chan, G. K. et al. Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC. J. Cell Biol.146, 941–954 (1999). CASPubMedPubMed Central Google Scholar
Yao, X. et al. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nature Cell Biol.2, 484–491 (2000). CASPubMed Google Scholar
Abrieu, A., Kahana, J. A., Wood, K. W. & Cleveland, D. W. CENP-E as an essential component of the mitotic checkpoint in vitro. Cell102, 817–826 (2000). CASPubMed Google Scholar
McEwen, B. F. et al. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol. Biol. Cell12, 2776–2789 (2001). CASPubMedPubMed Central Google Scholar
Banks, J. D. & Heald, R. Chromosome movement: dynein-out at the kinetochore. Curr. Biol.11, R128–R131 (2001). CASPubMed Google Scholar
Starr, D. A., Williams, B. C., Hays, T. S. & Goldberg, M. L. ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol.142, 763–774 (1998). CASPubMedPubMed Central Google Scholar
Savoian, M. S., Goldberg, M. L. & Rieder, C. L. The rate of poleward chromosome motion is attenuated in Drosophila zw10 and rod mutants. Nature Cell Biol.2, 948–952 (2000). CASPubMed Google Scholar
Sharp, D. J., Rogers, G. C. & Scholey, J. M. Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nature Cell Biol.2, 922–930 (2000). CASPubMed Google Scholar
Chan, G. K. et al. Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores. Nature Cell Biol.2, 944–947 (2000). ArticleCASPubMed Google Scholar
Basto, R., Gomes, R. & Karess, R. E. Rough deal and Zw10 are required for the metaphase checkpoint in Drosophila. Nature Cell Biol.2, 939–943 (2000). CASPubMed Google Scholar
Yu, H. G., Muszynski, M. G. & Dawe, R. K. The maize homologue of the cell cycle checkpoint protein MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns. J. Cell Biol.145, 425–435 (1999). CASPubMedPubMed Central Google Scholar
Waters, J. C., Chen, R. H., Murray, A. W. & Salmon, E. D. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J. Cell Biol.141, 1181–1191 (1998). CASPubMedPubMed Central Google Scholar
Skoufias, D. A. et al. Mammalian Mad2 and Bub1/BubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. Proc. Natl Acad. Sci. USA98, 4492–4497 (2001). CASPubMedPubMed Central Google Scholar
Zhou, J. et al. Minor alteration of microtubule dynamics causes loss of tension across kinetochore pairs and activates the spindle checkpoint. J. Biol. Chem.277, 17200–17208 (2002). CASPubMed Google Scholar
Gorbsky, G. J. & Ricketts, W. A. Differential expression of a phosphoepitope at the kinetochores of moving chromosomes. J. Cell Biol.122, 1311–1321 (1993). CASPubMed Google Scholar
Taylor, S. S. et al. Kinetochore localisation and phosphorylation of the mitotic checkpoint components Bub1 and BubR1 are differentially regulated by spindle events in human cells. J. Cell Sci.114, 4385–4395 (2001). CASPubMed Google Scholar
Kapoor, T. M., Mayer, T. U., Coughlin, M. L. & Mitchison, T. J. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J. Cell Biol.150, 975–988 (2000). CASPubMedPubMed Central Google Scholar
Shonn, M. A., McCarroll, R. & Murray, A. W. Requirement of the spindle checkpoint for proper chromosome segregation in budding yeast meiosis. Science289, 300–303 (2000). CASPubMed Google Scholar
Stern, B. M. & Murray, A. W. Lack of tension at kinetochores activates the spindle checkpoint in budding yeast. Curr. Biol.11, 1462–1467 (2001). CASPubMed Google Scholar
Hoffman, D. B. et al. Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores. Mol. Biol. Cell12, 1995–2009 (2001). CASPubMedPubMed Central Google Scholar
Taylor, S. S. & McKeon, F. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell89, 727–735 (1997). CASPubMed Google Scholar
Taylor, S. S., Ha, E. & McKeon, F. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J. Cell Biol.142, 1–11 (1998). CASPubMedPubMed Central Google Scholar
Jablonski, S. A. et al. The hBUB1 and hBUBR1 kinases sequentially assemble onto kinetochores during prophase with hBUBR1 concentrating at the kinetochore plates in mitosis. Chromosoma107, 386–396 (1998). CASPubMed Google Scholar
Basu, J. et al. Localization of the Drosophila checkpoint control protein Bub3 to the kinetochore requires Bub1 but not Zw10 or Rod. Chromosoma107, 376–385 (1998). CASPubMed Google Scholar
Martinez-Exposito, M. J., Kaplan, K. B., Copeland, J. & Sorger, P. K. Retention of the BUB3 checkpoint protein on lagging chromosomes. Proc. Natl Acad. Sci. USA96, 8493–8498 (1999). CASPubMedPubMed Central Google Scholar
Adams, R. R., Carmena, M. & Earnshaw, W. E. Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol.11, 49–54 (2001). CASPubMed Google Scholar
Tanaka, T. U. et al. Evidence that the Ipl1–Sli15 (Aurora kinase–INCENP) complex promotes chromosome bi-orientation by altering kinetochore–spindle pole connections. Cell108, 317–329 (2002). CASPubMed Google Scholar
Shimoda, S. L. & Solomon, F. Integrating functions at the kinetochore. Cell109, 9–12 (2002). CASPubMed Google Scholar
Biggins, S. & Murray, A. W. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev.15, 3118–3129 (2001). CASPubMedPubMed Central Google Scholar
Piatti, S., Lengauer, C. & Nasmyth, K. Cdc6 is an unstable protein whose de novo synthesis in G1 is important for the onset of S phase and for preventing a 'reductional' anaphase in the budding yeast Saccharomyces cerevisiae. EMBO J.14, 3788–3799 (1995). CASPubMedPubMed Central Google Scholar
Kitagawa, K. & Hieter, P. Evolutionary conservation between budding yeast and human kinetochores. Nature Rev. Mol. Cell Biol.2, 678–687 (2001). CAS Google Scholar
Murata-Hori, M. & Wang, Y. The kinase activity of Aurora B is required for kinetochore–microtubule interactions in mitosis. Curr. Biol.12, 894–899 (2002). CASPubMed Google Scholar
Kallio, M. J., McCleland, M. L., Stukenberg, P. T. & Gorbsky, G. J. Inhibition of Aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis. Curr. Biol.12, 900–905 (2002). CASPubMed Google Scholar
Nicklas, R. B. & Ward, S. C. Elements of error correction in mitosis: microtubule capture, release, and tension. J. Cell Biol.126, 1241–1253 (1994). CASPubMed Google Scholar
Nicklas, R. B., Waters, J. C., Salmon, E. D. & Ward, S. C. Checkpoint signals in grasshopper meiosis are sensitive to microtubule attachment, but tension is still essential. J. Cell Sci.114, 4173–4183 (2001). CASPubMed Google Scholar
Chen, R. H., Shevchenko, A., Mann, M. & Murray, A. W. Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J. Cell Biol.143, 283–295 (1998). CASPubMedPubMed Central Google Scholar
Millband, D. N. & Hardwick, K. G. Fission yeast Mad3p is required for Mad2p to inhibit the anaphase-promoting complex and localises to kinetochores in a Bub1p, Bub3p and Mph1p dependent manner. Mol. Cell. Biol.22, 2728–2742 (2002). CASPubMedPubMed Central Google Scholar
Sharp-Baker, H. & Chen, R. H. Spindle checkpoint protein Bub1 is required for kinetochore localization of Mad1, Mad2, Bub3, and CENP-E, independently of its kinase activity. J. Cell Biol.153, 1239–1250 (2001). CASPubMedPubMed Central Google Scholar
Abrieu, A. et al. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell106, 83–93 (2001). CASPubMed Google Scholar
Chen, R. H. BubR1 is required for kinetochore localization of other spindle checkpoint proteins and its phosphorylation requires Mad1. J. Cell Biol.158, 487–496 (2002). CASPubMedPubMed Central Google Scholar
Brady, D. M. & Hardwick, K. G. Complex formation between Mad1p, Bub1p and Bub3p is crucial for spindle checkpoint function. Curr. Biol.10, 675–678 (2000). CASPubMed Google Scholar
Chung, E. & Chen, R.-H. Spindle checkpoint requires Mad1-bound and Mad1-free Mad2. Mol. Biol. Cell13, 1501–1511 (2002). CASPubMedPubMed Central Google Scholar
Howell, B. J. et al. Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J. Cell Biol.150, 1233–1250 (2000).A dynamic cycle of interaction of Mad2 with kinetochores, spindle fibres and spindle poles is revealed using an elegant fluorescence-recovery after photobleaching approach. The transient nature of the interaction of Mad2 with kinetochores is consistent with the catalytic model of kinetochore function in generating the 'wait anaphase' signal. CASPubMedPubMed Central Google Scholar
Howell, B. J., Farrar, E., Fang, G. & Salmon, E. D. Visualization of Cdc20 and BubRI dynamics in living cells. Mol. Biol. Cell12(S), 315a (2001). Google Scholar
Sudakin, V., Chan, G. K. & Yen, T. J. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol.154, 925–936 (2001).An APC/C inhibitory factor purified from HeLa cells was found to consist of BubR1, Bub3, Cdc20 and Mad2 checkpoint proteins in near equal stoichiometry. The APC inhibitory activity of this complex is 3,000 times than that of recombinant Mad2. This complex might not be generated from kinetochores because it is also present and active in interphase cells. Together with ref.63, this paper uncovers a direct role of BubR1 in Cdc20 binding and APC inhibition, but some of the conclusions do not coincide. CASPubMedPubMed Central Google Scholar
Tang, Z., Bharadwaj, R., Li, B. & Yu, H. Mad2-independent inhibition of APC–Cdc20 by the mitotic checkpoint protein BubR1. Dev. Cell1, 227–237 (2001).A checkpoint complex containing BubR1 and Bub3 is purified from mitotic human cells and found to interact with Cdc20 in the absence of other proteins and to block the binding of Cdc20 to APC. Together with ref.62this paper establishes a direct role of BubR1 in Cdc20 binding and checkpoint activity. CASPubMed Google Scholar
Fraschini, R. et al. Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores. EMBO J.20, 6648–6659 (2001). CASPubMedPubMed Central Google Scholar
Wojcik, E. et al. Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein. Nature Cell Biol.3, 1001–1007 (2001).Together with ref.66, this paper shows that dynein might contribute to shutting off the metaphase checkpoint, allowing anaphase to ensue. A complementary set of kinetochore proteins is monitored relative to those described in ref.66, revealing a general mechanism of checkpoint inactivation. CASPubMed Google Scholar
Howell, B. J. et al. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J. Cell Biol.155, 1159–1172 (2001).Inhibition of dynein and dynactin activity in PtK1 cells blocks the transport to the spindle poles of many proteins located in the kinetochore outer domain, including Mad2, BubR1 and CENP-E. Furthermore, it prevents Mad2 depletion from kinetochores and induces a mitotic block at metaphase without blocking chromosome congression or anaphase. Thus, dynein and dynactin participate in a kinetochore-disassembly pathway that inactivates the spindle checkpoint. CASPubMedPubMed Central Google Scholar
Gorbsky, G. J., Chen, R. H. & Murray, A. W. Microinjection of antibody to Mad2 protein into mammalian cells in mitosis induces premature anaphase. J. Cell Biol.141, 1193–1205 (1998). CASPubMedPubMed Central Google Scholar
Canman, J. C., Hoffman, D. B. & Salmon, E. D. The role of pre- and post-anaphase microtubules in the cytokinesis phase of the cell cycle. Curr. Biol.10, 611–614 (2000). CASPubMed Google Scholar
Basu, J. et al. Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J. Cell Biol.146, 13–28 (1999). CASPubMedPubMed Central Google Scholar
Ikui, A. E., Furuya, K., Yanagida, M. & Matsumoto, T. Control of localization of a spindle checkpoint protein, Mad2, in fission yeast. J. Cell Sci.115, 1603–1610 (2002). CASPubMed Google Scholar
Hardwick, K. G., Johnston, R. C., Smith, D. L. & Murray, A. W. MAD3 encodes a novel component of the spindle checkpoint which interacts with Bub3p, Cdc20p, and Mad2p. J. Cell Biol.148, 871–882 (2000). CASPubMedPubMed Central Google Scholar
Luo, X., Tang, Z., Rizo, J. & Yu, H. The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20. Mol. Cell9, 59–71 (2002).The structure of Mad2 bound to a synthetic peptide. The Mad2 carboxy-terminal tail undergoes a striking conformational change relative to the unbound form of Mad2. Together with ref.73, the paper also identifies a common Mad2-binding motif in Mad1 and Cdc20, and proposes that the carboxy-terminal tail of Mad2 undergoes the same conformational change when bound to these ligands. PubMed Google Scholar
Sironi, L. et al. Crystal structure of the tetrameric Mad1–Mad2 core complex: implications of a 'safety belt' binding mechanism for the spindle checkpoint. EMBO J.21, 2496–2506 (2002).Reports the structure of the Mad1–Mad2 tetramer. An interaction mechanism defined as a 'safety belt' is identified and its implications for the interaction of Mad2 with Mad1 and Cdc20 are discussed. With refs72and75, this is the first report of structural work on checkpoint proteins. CASPubMedPubMed Central Google Scholar
Jin, D. Y., Spencer, F. & Jeang, K. T. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell93, 81–91 (1998). CASPubMed Google Scholar
Luo, X. et al. Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20. Nature Struct. Biol.7, 224–229 (2000). CASPubMed Google Scholar
Zhang, Y. & Lees, E. Identification of an overlapping binding domain on Cdc20 for Mad2 and anaphase-promoting complex: model for spindle checkpoint regulation. Mol. Cell. Biol.21, 5190–5199 (2001). CASPubMedPubMed Central Google Scholar
Chen, R. H. et al. The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins. Mol. Biol. Cell10, 2607–2618 (1999). CASPubMedPubMed Central Google Scholar
Sironi, L. et al. Mad2 binding to Mad1 and Cdc20, rather than oligomerization, is required for the spindle checkpoint. EMBO J.20, 6371–6382 (2001). CASPubMedPubMed Central Google Scholar
Pines, J. Cell cycle trials in Salamanca: workshop on G2/M progression and associated checkpoints. EMBO Rep.3, 17–21 (2002). CASPubMedPubMed Central Google Scholar
Hardwick, K. G. et al. Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science273, 953–956 (1996). CASPubMed Google Scholar
Seeley, T. W., Wang, L. & Zhen, J. Y. Phosphorylation of human MAD1 by the BUB1 kinase in vitro. Biochem. Biophys. Res. Commun.257, 589–595 (1999). CASPubMed Google Scholar
Campbell, M. S., Chan, G. K. & Yen, T. J. Mitotic checkpoint proteins HsMAD1 and HsMAD2 are associated with nuclear pore complexes in interphase. J. Cell Sci.114, 953–963 (2001). CASPubMed Google Scholar
Fang, G., Yu, H. & Kirschner, M. W. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev.12, 1871–1883 (1998). CASPubMedPubMed Central Google Scholar
Michel, L. S. et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature409, 355–359 (2001). CASPubMed Google Scholar
Geley, S. et al. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J. Cell Biol.153, 137–148 (2001). CASPubMedPubMed Central Google Scholar
Rieder, C. L. et al. Mitosis in vertebrate somatic cells with two spindles: implications for the metaphase/anaphase transition checkpoint and cleavage. Proc. Natl Acad. Sci. USA94, 5107–5112 (1997). CASPubMedPubMed Central Google Scholar
Fang, G. Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol. Biol. Cell13, 755–766 (2002). CASPubMedPubMed Central Google Scholar
Kallio, M. et al. Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events. J. Cell Biol.141, 1393–1406 (1998). CASPubMedPubMed Central Google Scholar
Li, Y. et al. MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity. Proc. Natl Acad. Sci. USA94, 12431–12436 (1997). CASPubMedPubMed Central Google Scholar
Wassmann, K. & Benezra, R. Mad2 transiently associates with an APC/p55Cdc complex during mitosis. Proc. Natl Acad. Sci. USA95, 11193–11198 (1998). CASPubMedPubMed Central Google Scholar
Wu, H. et al. p55CDC/hCDC20 is associated with BUBR1 and may be a downstream target of the spindle checkpoint kinase. Oncogene19, 4557–4562 (2000). CASPubMed Google Scholar
Rudner, A. D. & Murray, A. W. Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase-promoting complex. J. Cell Biol.149, 1377–1390 (2000). CASPubMedPubMed Central Google Scholar
Huang, J.-Y. & Raff, J. W. The dynamic localisation of the Drosophila APC/C: evidence for the existence of multiple complexes that perform distinct functions and are differentially localised. J. Cell Sci.115, 2847–2856 (2002). CASPubMed Google Scholar
Uhlmann, F., Lottspeich, F. & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature400, 37–42 (1999). CASPubMed Google Scholar
Alexandru, G. et al. Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell105, 459–472 (2001). CASPubMed Google Scholar
Stemmann, O. et al. Dual inhibition of sister chromatid separation at metaphase. Cell107, 715–726 (2001). CASPubMed Google Scholar
Weinert, T. A. & Hartwell, L. H. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science241, 317–322 (1988). CASPubMed Google Scholar
Hartwell, L. H. & Weinert, T. A. Checkpoints: controls that ensure the order of cell cycle events. Science246, 629–634 (1989). CASPubMed Google Scholar
Fraschini, R., Formenti, E., Lucchini, G. & Piatti, S. Budding yeast Bub2 is localized at spindle pole bodies and activates the mitotic checkpoint via a different pathway from Mad2. J. Cell Biol.145, 979–991 (1999). CASPubMedPubMed Central Google Scholar
Fesquet, D. et al. A Bub2p-dependent spindle checkpoint pathway regulates the Dbf2p kinase in budding yeast. EMBO J.18, 2424–2434 (1999). CASPubMedPubMed Central Google Scholar
Pereira, G. et al. The Bub2p spindle checkpoint links nuclear migration with mitotic exit. Mol. Cell6, 1–10 (2000). CASPubMed Google Scholar
Bloecher, A., Venturi, G. M. & Tatchell, K. Anaphase spindle position is monitored by the BUB2 checkpoint. Nature Cell Biol.2, 556–558 (2000). CASPubMed Google Scholar
Pereira, G., Tanaka, T. U., Nasmyth, K. & Schiebel, E. Modes of spindle pole body inheritance and segregation of the Bfa1p–Bub2p checkpoint protein complex. EMBO J.20, 6359–6370 (2001). CASPubMedPubMed Central Google Scholar
Bardin, A. J. & Amon, A. MEN and SIN: what's the difference? Nature Rev. Mol. Cell Biol.2, 815–826 (2001). CAS Google Scholar
Gachet, Y., Tournier, S., Millar, J. B. & Hyams, J. S. A MAP kinase-dependent actin checkpoint ensures proper spindle orientation in fission yeast. Nature412, 352–355 (2001). CASPubMed Google Scholar
Weiss, E. & Winey, M. The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J. Cell Biol.132, 111–123 (1996). CASPubMed Google Scholar
Roberts, B. T., Farr, K. A. & Hoyt, M. A. The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase. Mol. Cell. Biol.14, 8282–8291 (1994). CASPubMedPubMed Central Google Scholar
Farr, K. A. & Hoyt, M. A. Bub1p kinase activates the Saccharomyces cerevisiae spindle assembly checkpoint. Mol. Cell. Biol.18, 2738–2747 (1998). CASPubMedPubMed Central Google Scholar
Warren, C. D. et al. Distinct chromosome segregation roles for spindle checkpoint proteins. Mol. Biol. Cell (in the press).
Stucke, V. M., Sillje, H. H. W., Arnaud, L. & Nigg, E. A. Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J.21, 1723–1732 (2002). CASPubMedPubMed Central Google Scholar
Hardwick, K. G. & Murray, A. W. Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast. J. Cell Biol.131, 709–720 (1995). CASPubMed Google Scholar
Schonn, M. A., McCarroll, R. & Murray, A. W. M. Requirement of the spindle checkpoint for proper chromosome segregation in budding yeast meiosis. Science289, 300–303 (2000). Google Scholar
Bernard, P., Maure, J. F. & Javerzat, J. P. Fission yeast Bub1 is essential in setting up the meiotic pattern of chromosome segregation. Nature Cell Biol.3, 522–526 (2001). CASPubMed Google Scholar
Dobles, M. et al. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell101, 635–645 (2000). CASPubMed Google Scholar
Kalitsis, P., Earle, E., Fowler, K. J. & Choo, K. H. Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev.14, 2277–2282 (2000). CASPubMedPubMed Central Google Scholar
Kitagawa, R. & Rose, A. M. Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans. Nature Cell Biol.1, 514–521 (1999). CASPubMed Google Scholar
Lee, H. et al. Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol. Cell4, 1–10 (1999). CASPubMed Google Scholar
Cahill, D. P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature392, 300–303 (1998). CASPubMed Google Scholar
Tighe, A., Johnson, V. L., Albertella, M. & Taylor, S. S. Aneuploid colon cancer cells have a robust spindle checkpoint. EMBO Rep.2, 609–614 (2001). CASPubMedPubMed Central Google Scholar
Fodde, R. et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nature Cell Biol.3, 433–438 (2001). CASPubMed Google Scholar
Kaplan, K. B. et al. A role for the adenomatous polyposis coli protein in chromosome segregation. Nature Cell Biol.3, 429–432 (2001). CASPubMed Google Scholar
Aravind, L. & Koonin, E. V. The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem. Sci.23, 284–286 (1998). CASPubMed Google Scholar
Zecevic, M. et al. Active MAP kinase in mitosis: localization at kinetochores and association with the motor protein CENP-E. J. Cell Biol.142, 1547–1558 (1998). CASPubMedPubMed Central Google Scholar
Schwab, M. S. et al. Bub1 is activated by the protein kinase p90_Rsk_ during Xenopus oocyte maturation. Curr. Biol.11, 141–150 (2001). CASPubMed Google Scholar
Scaerou, F. et al. The ZW10 and Rough Deal checkpoint proteins function together in a large, evolutionarily conserved complex targeted to the kinetochore. J. Cell Sci.114, 3103–3114 (2001). CASPubMed Google Scholar
Daum, J. R. et al. The 3F3/2 anti-phosphoepitope antibody binds mitotically phosphorylated anaphase-promoting complex/cyclosome. Curr. Biol.10, 850–852 (2000). Google Scholar
Shannon, K. B., Canman, J. C. & Salmon, E. D. . Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension. Mol. Biol. Cell, 2002 August 6 (DOI 10.1091/mbc.E02-03-0137).
Martin-Lluesma, S., Stucke, V. M. & Nigg, E. A. . Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science (in the press).