Closed state of both binding domains of homodimeric mGlu receptors is required for full activity (original) (raw)
Cho, H.S. & Leahy, D.J. Structure of the extracellular region of HER3 reveals an interdomain tether. Science297, 1330–1333 (2002). ArticleCASPubMed Google Scholar
Cho, H.S. et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature421, 756–760 (2003). ArticleCASPubMed Google Scholar
Ogiso, H. et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell110, 775–787 (2002). ArticleCASPubMed Google Scholar
Ferguson, K.M. et al. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol. Cell11, 507–517 (2003). ArticleCASPubMed Google Scholar
He, X.-L., Chow, D.-C., Martick, M.M. & Garcia, K.C. Allosteric activation of a spring-loaded natriuretic peptide receptor dimer by hormone. Science293, 1657–1662 (2001). ArticleCAS Google Scholar
van den Akker, F. et al. Structure of the dimerized hormone-binding domain of a guanylyl-cyclase-coupled receptor. Nature406, 101–104 (2000). ArticleCASPubMed Google Scholar
van den Akker, F. Structural insights into the ligand binding domains of membrane bound guanylyl cyclases and natriuretic peptide receptors. J. Mol. Biol.311, 923–937 (2001). ArticleCASPubMed Google Scholar
Tsuchiya, D., Kunishima, N., Kamiya, N., Jingami, H. & Morikawa, K. Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc. Natl. Acad. Sci. USA99, 2660–2665 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kunishima, N. et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature407, 971–977 (2000). ArticleCASPubMed Google Scholar
Dann, C.E. et al. Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature412, 86–90 (2001). ArticleCASPubMed Google Scholar
West, A.P., Jr., Llamas, L.L., Snow, P.M., Benzer, S. & Bjorkman, P.J. Crystal structure of the ectodomain of Methuselah, a Drosophila G protein-coupled receptor associated with extended lifespan. Proc. Natl. Acad. Sci. USA98, 3744–3749 (2001). ArticleCASPubMedPubMed Central Google Scholar
Pin, J.P., Galvez, T. & Prezeau, L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol. Ther.98, 325–354 (2003). ArticleCASPubMed Google Scholar
O'Hara, P.J. et al. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron11, 41–52 (1993). ArticleCASPubMed Google Scholar
Romano, C., Yang, W.L. & O'Malley, K.L. Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J. Biol. Chem.271, 28612–28616 (1996). ArticleCASPubMed Google Scholar
Bessis, A.S. et al. Closure of the Venus flytrap module of mGlu8 receptor and the activation process: Insights from mutations converting antagonists into agonists. Proc. Natl. Acad. Sci. USA99, 11097–11102 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kniazeff, J., Galvez, T., Labesse, G. & Pin, J.P. No ligand binding in the GB2 subunit of the GABAB receptor is required for activation and allosteric interaction between the subunits. J. Neurosci.22, 7352–7361 (2002). ArticleCASPubMedPubMed Central Google Scholar
Margeta-Mitrovic, M., Jan, Y.N. & Jan, L.Y. A trafficking checkpoint controls GABAB receptor heterodimerization. Neuron27, 97–106 (2000). ArticleCASPubMed Google Scholar
Pagano, A. et al. C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABAB receptors. J. Neurosci.21, 1189–1202 (2001). ArticleCASPubMedPubMed Central Google Scholar
Couve, A. et al. Intracellular retention of recombinant GABAB receptors. J. Biol. Chem.273, 26361–26367 (1998). ArticleCASPubMed Google Scholar
Ray, K. & Hauschild, B.C. Cys-140 Is critical for metabotropic glutamate receptor-1 (mGluR-1) dimerization. J. Biol. Chem.275, 34245–34251 (2000). ArticleCASPubMed Google Scholar
Tsuji, Y. et al. Cryptic dimer interface and domain organization of the extracellular region of metabotropic glutamate receptor subtype 1. J. Biol. Chem.275, 28144–28151 (2000). CASPubMed Google Scholar
Bazin, H., Trinquet, E. & Mathis, G. Time resolved amplification of cryptate emission: a versatile technology to trace biomolecular interactions. Rev. Mol. Biotech.82, 233–250 (2002). ArticleCAS Google Scholar
Maurel, D. et al. Cell surface detection of membrane protein interaction with HTRF technology. Anal. Biochem.329, 253–262 (2004). ArticleCASPubMed Google Scholar
Goudet, C. et al. Heptahelical domain of metabotropic glutamate receptor 5 behaves like rhodopsin-like receptors. Proc. Natl. Acad. Sci. USA101, 378–383 (2004). ArticleCASPubMed Google Scholar
Pin, J.-P. & Acher, F. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr. Drug Targets CNS Neurol. Disord.1, 297–317 (2002). ArticleCASPubMed Google Scholar
Havlickova, M. et al. The intracellular loops of the GB2 subunit are crucial for G-protein coupling of the heteromeric γ-aminobutyrate B receptor. Mol. Pharmacol.62, 343–350 (2002). ArticleCASPubMed Google Scholar
Chang, W., Chen, T.H., Pratt, S. & Shoback, D. Amino acids in the second and third intracellular loops of the parathyroid Ca2+-sensing receptor mediate efficient coupling to phospholipase C. J. Biol. Chem.275, 19955–19963 (2000). ArticleCASPubMed Google Scholar
Francesconi, A. & Duvoisin, R.M. Role of the second and third intracellular loops of metabotropic glutamate receptors in mediating dual signal transduction activation. J. Biol. Chem.273, 5615–5624 (1998). ArticleCASPubMed Google Scholar
Galvez, T. et al. Mapping the agonist binding site of GABAB type 1 subunit sheds light on the activation process of GABAB receptors. J. Biol. Chem.275, 41166–41174 (2000). ArticleCASPubMed Google Scholar
Marshall, F.H., Jones, K.A., Kaupmann, K. & Bettler, B. GABAB receptors—the first 7TM heterodimers. Trends Pharmacol. Sci.20, 396–399 (1999). ArticleCASPubMed Google Scholar
Galvez, T. et al. Allosteric interactions between GB1 and GB2 subunits are required for optimal GABAB receptor function. EMBO J.20, 2152–2159 (2001). ArticleCASPubMedPubMed Central Google Scholar
Duthey, B. et al. A single subunit (GB2) is required for G-protein activation by the heterodimeric GABAB receptor. J. Biol. Chem.277, 3236–3241 (2002). ArticleCASPubMed Google Scholar
Pin, J.-P. & Bockaert, J. Part IV: type III family of GPCRs—metabotropic glutamate receptors. In Structure-Function of G-protein Coupled Receptors in the CNS (eds. Pangalos, M. & Davies, C.) 586–616 (Oxford Univ. Press, Oxford, 2002). Google Scholar
Kubo, Y., Miyashita, T. & Murata, Y. Structural basis for a Ca2+-sensing function of the metabotropic glutamate receptors. Science279, 1722–1725 (1998). ArticleCASPubMed Google Scholar
Ango, F. et al. A simple method to transfer plasmid DNA into neuronal primary cultures: functional expression of the mGlu5 receptor in cerebellar granule cells. Neuropharmacology38, 793–803 (1999). ArticleCASPubMed Google Scholar
Brabet, I. et al. Comparative effect of L-CCG-I, DCG-IV and γ-carboxy-L-glutamate on all cloned metabotropic glutamate receptor subtypes. Neuropharmacology37, 1043–1051 (1998). ArticleCASPubMed Google Scholar
Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis18, 2714–2723 (1997). ArticleCASPubMed Google Scholar