Nucleotide-dependent substrate recognition by the AAA+ HslUV protease (original) (raw)
References
Gottesman, S. Proteolysis in bacterial regulatory circuits. Annu. Rev. Cell Dev. Biol.19, 565–587 (2003). ArticleCAS Google Scholar
Chiba, S., Akiyama, Y., Mori, H., Matsuo, E. & Ito, K. Length recognition at the N-terminal tail for the initiation of FtsH-mediated proteolysis. EMBO Rep.1, 47–52 (2000). ArticleCAS Google Scholar
Bochtler, M., Ditzel, L., Groll, M. & Huber, R. Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc. Natl. Acad. Sci. USA94, 6070–6074 (1997). ArticleCAS Google Scholar
Bochtler, M. et al. The structures of HslU and the ATP-dependent protease HslU-HslV. Nature403, 800–805 (2000). ArticleCAS Google Scholar
Sousa, M.C., Kessler, B.M., Overkleeft, H.S. & McKay, D.B. Crystal structure of HslUV complexed with a vinyl sulfone inhibitor: corroboration of a proposed mechanism of allosteric activation of HslV by HslU. J. Mol. Biol.318, 779–785 (2002). ArticleCAS Google Scholar
Sousa, M.C. et al. Crystal and solution structures of an HslUV protease–chaperone complex. Cell103, 633–643 (2000). ArticleCAS Google Scholar
Song, H.K. et al. Mutational studies on HslU and its docking mode with HslV. Proc. Natl. Acad. Sci. USA97, 14103–14108 (2000). ArticleCAS Google Scholar
Wang, J. et al. Nucleotide-dependent conformational changes in a protease-associated ATPase HslU. Structure9, 1107–1116 (2001). ArticleCAS Google Scholar
Trame, C.B. & McKay, D.B. Structure of Haemophilus influenzae HslU protein in crystals with one-dimensional disorder twinning. Acta Crystallogr. D57, 1079–1090 (2001).
Rohrwild, M. et al. The ATP-dependent HslUV protease from Escherichia coli is a four-ring structure resembling the proteasome. Nat. Struct. Biol.4, 133–139 (1997). ArticleCAS Google Scholar
Kanemori, M., Nishihara, K., Yanagi, H. & Yura, T. Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. J. Bacteriol.179, 7219–7225 (1997). ArticleCAS Google Scholar
Missiakas, D., Schwager, F., Betton, J.-M., Georgopoulos, C. & Rania, S. Identification and characterization of HslV HslU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. EMBO J.15, 6899–6909 (1996). ArticleCAS Google Scholar
Wu, W.-F., Zhou, Y. & Gottesman, S. Redundant in vivo proteolytic activities of Escherichia coli Lon and the ClpYQ (HslUV) protease. J. Bacteriol.181, 3681–3687 (1999). CASPubMedPubMed Central Google Scholar
Chuang, S. & Blattner, F.R. Characterization of twenty-six new heat shock genes of Escherichia coli. J. Bacteriol.175, 5242–5252 (1993). ArticleCAS Google Scholar
Seong, I.S., Oh, J.Y., Yoo, S.J., Seol, J.H. & Chung, C.H. ATP-dependent degradation of SulA, a cell division inhibitor, by the HslUV protease in Escherichia coli. FEBS Lett.456, 211–214 (1999). ArticleCAS Google Scholar
Nishii, W. & Takahashi, L. Determination of the cleavage sites in SulA, a cell division inhibitor, by the ATP-dependent HslVU protease from Escherichia coli. FEBS Lett.553, 351–354 (2003). ArticleCAS Google Scholar
Kwon, A.R., Trame, C.B. & McKay, D.B. Kinetics of protein substrate degradation by HslUV. J. Struct. Biol.146, 141–147 (2004). ArticleCAS Google Scholar
Waldburger, C.D., Schildbach, J.F. & Sauer, R.T. Are buried salt bridges important for protein stability and conformational specificity? Nat. Struct. Biol.2, 122–128 (1995). ArticleCAS Google Scholar
Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: a comparison. Proc. Natl. Acad. Sci. USA96, 3694–3699 (1999). ArticleCAS Google Scholar
Kenniston, J.A., Baker, T.A., Fernandez, J.M. & Sauer, R.T. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell114, 511–520 (2003). ArticleCAS Google Scholar
Breg, J.N., Opheusden, J.H.v., Burgering, M.J., Boelens, R. & Kaptein, R. Structure of Arc repressor in solution: evidence for a family of β-sheet DNA-binding proteins. Nature346, 586–589 (1990). ArticleCAS Google Scholar
Milla, M.E. & Sauer, R.T. Critical side-chain interactions at a subunit interface in the Arc repressor dimer. Biochemistry34, 3344–3351 (1995). ArticleCAS Google Scholar
Burgering, M.J.M., Hald, M., Boelens, R., Breg, J.N. & Kaptein, R. Hydrogen exchange studies of the Arc repressor: evidence for a monomeric folding intermediate. Biopolymers35, 217–226 (1995). ArticleCAS Google Scholar
Schlieker, C. et al. Substrate recognition by the AAA+ chaperone ClpB. Nat. Struct. Mol. Biol.11, 607–615 (2004). ArticleCAS Google Scholar
Siddiqui, S.M., Sauer, R.T. & Baker, T.A. Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates. Genes Dev.18, 369–374 (2004). ArticleCAS Google Scholar
Sondek, J., Lambright, D.G., Noel, J.P., Hamm, H.E. & Sigler, P.B. GTPase mechanism of G proteins from the 1.7-Å crystal structure of transducin α•GDP•AlF4−. Nature372, 276–279 (1994). ArticleCAS Google Scholar
Ishii, Y. et al. Regulatory role of C-terminal residues of SulA in its degradation by Lon protease in Escherichia coli. J. Biochem.127, 837–844 (2000). ArticleCAS Google Scholar
Kwon, A.R., Kesseler, B.M., Overkleeft, H.S. & McKay, D.B. Structure and reactivity of an asymmetric complex between HslV and I-domain deleted HslU, a prokaryotic homolog of the eukaryotic proteasome. J. Mol. Biol.330, 185–195 (2003). ArticleCAS Google Scholar
Levchenko, I., Seidel, M., Sauer, R.T. & Baker, T.A. A specificity-enhancing factor controls substrate delivery to the ClpXP degradation machine. Science289, 2354–2356 (2000). ArticleCAS Google Scholar
Milla, M.E., Brown, B.M., Waldbuger, C.D. & Sauer, R.T. P22 Arc repressor: transition state properties inferred from mutational effects on the rates of protein unfolding and refolding. Biochemistry39, 12494–12502 (1995). Google Scholar
Bowie, J.U. & Sauer, R.T. Equilibrium dissociation and unfolding of the Arc repressor dimer. Biochemistry28, 7139–7143 (1989). ArticleCAS Google Scholar
Kim, Y.-I., Burton, R.E., Burton, B.M., Sauer, R.T. & Baker, T.A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell5, 639–648 (2000). ArticleCAS Google Scholar
Burton, R.E., Siddiqui, S.M., Kim, Y.-I., Baker, T.A. & Sauer, R.T. Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine. EMBO J.20, 3092–3100 (2001). ArticleCAS Google Scholar
Lee, C., Schwartz, M.P., Prakash, S., Iwakura, M. & Matouschek, A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell7, 627–637 (2001). ArticleCAS Google Scholar
Kenniston, J.A., Burton, R.E., Siddiqui, S.M., Baker, T.A. & Sauer, R.T. Effects of local protein stability and the geometric position of the substrate degradation tag on the efficiency of ClpXP denaturation and degradation. J. Struct. Biol.146, 130–140 (2004). ArticleCAS Google Scholar
Schildbach, J.F., Milla, M.E., Jeffrey, P.D., Raumann, B.E. & Sauer, R.T. Crystal structure, folding, and operator binding of the hyperstable Arc repressor mutant PL8. Biochemistry34, 1405–1412 (1995). ArticleCAS Google Scholar
Robinson, C.R. & Sauer, R.T. Striking stabilization of Arc repressor by an engineered disulfide bond. Biochemistry39, 12494–12502 (2000). ArticleCAS Google Scholar
Bolon, D.N., Grant, R.A., Baker, T.A. & Sauer, R.T. Nucleotide-dependent substrate handoff from the SspB adaptor to the AAA+ ClpXP protease. Mol. Cell16, 343–350 (2004). ArticleCAS Google Scholar
Singh, S.K., Grimaud, R., Hoskins, J.R., Wickner, S. & Maurizi, M.R. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc. Natl. Acad. Sci. USA97, 8898–8903 (2000). ArticleCAS Google Scholar
Gottesman, S., Roche, E., Zhou, Y. & Sauer, R.T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the ssrA-tagging system. Genes Dev.12, 1338–1347 (1998). ArticleCAS Google Scholar