Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C (original) (raw)

References

  1. Buchmeier, N.A. et al. DNA repair is more important than catalase for Salmonella virulence in mice. J. Clin. Invest. 95, 1047–1053 (1995).
    Article CAS Google Scholar
  2. Buchmeier, N.A., Lipps, C.J., So, M.Y. & Heffron, F. Recombination-deficient mutants of Salmonella typhimurium are avirulent and sensitive to the oxidative burst of macrophages. Mol. Microbiol. 7, 933–936 (1993).
    Article CAS Google Scholar
  3. O'Rourke, E.J. et al. Pathogen DNA as target for host-generated oxidative stress: role for repair of bacterial DNA damage in Helicobacter pylori colonization. Proc. Natl. Acad. Sci. USA 100, 2789–2794 (2003).
    Article CAS Google Scholar
  4. Suvarnapunya, A.E., Lagasse, H.A. & Stein, M.A. The role of DNA base excision repair in the pathogenesis of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 48, 549–559 (2003).
    Article CAS Google Scholar
  5. Sander, P. et al. Mycobacterium bovis BCG recA deletion mutant shows increased susceptibility to DNA-damaging agents but wild-type survival in a mouse infection model. Infect. Immun. 69, 3562–3568 (2001).
    Article CAS Google Scholar
  6. Darwin, K.H., Ehrt, S., Gutierrez-Ramos, J.C., Weich, N. & Nathan, C.F. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302, 1963–1966 (2003).
    Article CAS Google Scholar
  7. Boshoff, H.I., Reed, M.B., Barry, C.E. & Mizrahi, V. DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell 113, 183–193 (2003).
    Article CAS Google Scholar
  8. Cromie, G.A., Connelly, J.C. & Leach, D.R. Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. Mol. Cell 8, 1163–1174 (2001).
    Article CAS Google Scholar
  9. Lieber, M.R., Ma, Y., Pannicke, U. & Schwarz, K. Mechanism and regulation of human non-homologous DNA end-joining. Nat. Rev. Mol. Cell Biol. 4, 712–720 (2003).
    Article CAS Google Scholar
  10. Downs, J.A. & Jackson, S.P. A means to a DNA end: the many roles of Ku. Nat. Rev. Mol. Cell Biol. 5, 367–378 (2004).
    Article CAS Google Scholar
  11. Riballo, E. et al. Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr. Biol. 9, 699–702 (1999).
    Article CAS Google Scholar
  12. Barnes, D.E., Tomkinson, A.E., Lehmann, A.R., Webster, A.D. & Lindahl, T. Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity to DNA-damaging agents. Cell 69, 495–503 (1992).
    Article CAS Google Scholar
  13. Schar, P., Herrmann, G., Daly, G. & Lindahl, T. A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks. Genes Dev. 11, 1912–1924 (1997).
    Article CAS Google Scholar
  14. Teo, S.H. & Jackson, S.P. Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. EMBO J. 16, 4788–4795 (1997).
    Article CAS Google Scholar
  15. Wilson, T.E., Grawunder, U. & Lieber, M.R. Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature 388, 495–498 (1997).
    Article CAS Google Scholar
  16. Frank, K.M. et al. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 396, 173–177 (1998).
    Article CAS Google Scholar
  17. Grawunder, U., Zimmer, D., Fugmann, S., Schwarz, K. & Lieber, M.R. DNA ligase IV is essential for V(D)J recombination and DNA double-strand break repair in human precursor lymphocytes. Mol. Cell 2, 477–484 (1998).
    Article CAS Google Scholar
  18. Konrad, E.B., Modrich, P. & Lehman, I.R. Genetic and enzymatic characterization of a conditional lethal mutant of Escherichia coli K12 with a temperature-sensitive DNA ligase. J. Mol. Biol. 77, 519–529 (1973).
    Article CAS Google Scholar
  19. Magnet, S. & Blanchard, J.S. Mechanistic and kinetic study of the ATP-dependent DNA ligase of Neisseria meningitidis. Biochemistry 43, 710–717 (2004).
    Article CAS Google Scholar
  20. Wilkinson, A., Day, J. & Bowater, R. Bacterial DNA ligases. Mol. Microbiol. 40, 1241–1248 (2001).
    Article CAS Google Scholar
  21. Cheng, C. & Shuman, S. Characterization of an ATP-dependent DNA ligase encoded by Haemophilus influenzae. Nucleic Acids Res. 25, 1369–1374 (1997).
    Article CAS Google Scholar
  22. Gong, C., Martins, A., Bongiorno, P., Glickman, M. & Shuman, S. Biochemical and genetic analysis of the four DNA ligases of mycobacteria. J. Biol. Chem. 279, 20594–20606 (2004).
    Article CAS Google Scholar
  23. Aravind, L. & Koonin, E.V. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res. 11, 1365–1374 (2001).
    Article CAS Google Scholar
  24. Doherty, A.J., Jackson, S.P. & Weller, G.R. Identification of bacterial homologues of the Ku DNA repair proteins. FEBS Lett. 500, 186–188 (2001).
    Article CAS Google Scholar
  25. Della, M. et al. Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine. Science 306, 683–685 (2004).
    Article CAS Google Scholar
  26. Zhu, H. & Shuman, S. A primer-dependent polymerase function of Pseudomonas aeruginosa ATP-dependent DNA ligase (LigD). J. Biol. Chem. 280, 418–427 (2005).
    Article CAS Google Scholar
  27. Weller, G.R. et al. Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297, 1686–1689 (2002).
    Article CAS Google Scholar
  28. Braunstein, M., Brown, A.M., Kurtz, S. & Jacobs, W.R. Jr. Two nonredundant SecA homologues function in mycobacteria. J. Bacteriol. 183, 6979–6990 (2001).
    Article CAS Google Scholar
  29. Lipps, G., Weinzierl, A.O., von Scheven, G., Buchen, C. & Cramer, P. Structure of a bifunctional DNA primase-polymerase. Nat. Struct. Mol. Biol. 11, 157–162 (2004).
    Article CAS Google Scholar
  30. Ito, N., Nureki, O., Shirouzu, M., Yokoyama, S. & Hanaoka, F. Crystal structure of the Pyrococcus horikoshii DNA primase-UTP complex: implications for the mechanism of primer synthesis. Genes Cells 8, 913–923 (2003).
    Article CAS Google Scholar
  31. Augustin, M.A., Huber, R. & Kaiser, J.T. Crystal structure of a DNA-dependent RNA polymerase (DNA primase). Nat. Struct. Biol. 8, 57–61 (2001).
    Article CAS Google Scholar
  32. Glickman, M.S. The mmaA2 gene of Mycobacterium tuberculosis encodes the distal cyclopropane synthase of the α-mycolic acid. J. Biol. Chem. 278, 7844–7849 (2003).
    Article CAS Google Scholar
  33. Manolis, K.G. et al. Novel functional requirements for non-homologous DNA end joining in Schizosaccharomyces pombe. EMBO J. 20, 210–221 (2001).
    Article CAS Google Scholar
  34. Walker, J.R., Corpina, R.A. & Goldberg, J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412, 607–614 (2001).
    Article CAS Google Scholar
  35. Aylon, Y., Liefshitz, B. & Kupiec, M. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 23, 4868–4875 (2004).
    Article CAS Google Scholar
  36. Heidenreich, E., Novotny, R., Kneidinger, B., Holzmann, V. & Wintersberger, U. Non-homologous end joining as an important mutagenic process in cell cycle– arrested cells. EMBO J. 22, 2274–2283 (2003).
    Article CAS Google Scholar
  37. Ferreira, M.G. & Cooper, J.P. Two modes of DNA double-strand break repair are reciprocally regulated through the fission yeast cell cycle. Genes Dev. 18, 2249–2254 (2004).
    Article CAS Google Scholar
  38. Timm, J., Lim, E.M. & Gicquel, B. _Escherichia coli_– mycobacteria shuttle vectors for operon and gene fusions to lacZ: the pJEM series. J. Bacteriol. 176, 6749–6753 (1994).
    Article CAS Google Scholar
  39. Golemis, E. et al. The interaction trap. In Current Protocols in Molecular Biology (eds. Ausubel, F.M. et al.) 20.1.1–20.1.2 (Wiley, New York, 1999).
    Google Scholar

Download references