Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C (original) (raw)
References
Buchmeier, N.A. et al. DNA repair is more important than catalase for Salmonella virulence in mice. J. Clin. Invest.95, 1047–1053 (1995). ArticleCAS Google Scholar
Buchmeier, N.A., Lipps, C.J., So, M.Y. & Heffron, F. Recombination-deficient mutants of Salmonella typhimurium are avirulent and sensitive to the oxidative burst of macrophages. Mol. Microbiol.7, 933–936 (1993). ArticleCAS Google Scholar
O'Rourke, E.J. et al. Pathogen DNA as target for host-generated oxidative stress: role for repair of bacterial DNA damage in Helicobacter pylori colonization. Proc. Natl. Acad. Sci. USA100, 2789–2794 (2003). ArticleCAS Google Scholar
Suvarnapunya, A.E., Lagasse, H.A. & Stein, M.A. The role of DNA base excision repair in the pathogenesis of Salmonella enterica serovar Typhimurium. Mol. Microbiol.48, 549–559 (2003). ArticleCAS Google Scholar
Sander, P. et al. Mycobacterium bovis BCG recA deletion mutant shows increased susceptibility to DNA-damaging agents but wild-type survival in a mouse infection model. Infect. Immun.69, 3562–3568 (2001). ArticleCAS Google Scholar
Darwin, K.H., Ehrt, S., Gutierrez-Ramos, J.C., Weich, N. & Nathan, C.F. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science302, 1963–1966 (2003). ArticleCAS Google Scholar
Boshoff, H.I., Reed, M.B., Barry, C.E. & Mizrahi, V. DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell113, 183–193 (2003). ArticleCAS Google Scholar
Cromie, G.A., Connelly, J.C. & Leach, D.R. Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. Mol. Cell8, 1163–1174 (2001). ArticleCAS Google Scholar
Lieber, M.R., Ma, Y., Pannicke, U. & Schwarz, K. Mechanism and regulation of human non-homologous DNA end-joining. Nat. Rev. Mol. Cell Biol.4, 712–720 (2003). ArticleCAS Google Scholar
Downs, J.A. & Jackson, S.P. A means to a DNA end: the many roles of Ku. Nat. Rev. Mol. Cell Biol.5, 367–378 (2004). ArticleCAS Google Scholar
Riballo, E. et al. Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr. Biol.9, 699–702 (1999). ArticleCAS Google Scholar
Barnes, D.E., Tomkinson, A.E., Lehmann, A.R., Webster, A.D. & Lindahl, T. Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity to DNA-damaging agents. Cell69, 495–503 (1992). ArticleCAS Google Scholar
Schar, P., Herrmann, G., Daly, G. & Lindahl, T. A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks. Genes Dev.11, 1912–1924 (1997). ArticleCAS Google Scholar
Teo, S.H. & Jackson, S.P. Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. EMBO J.16, 4788–4795 (1997). ArticleCAS Google Scholar
Wilson, T.E., Grawunder, U. & Lieber, M.R. Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature388, 495–498 (1997). ArticleCAS Google Scholar
Frank, K.M. et al. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature396, 173–177 (1998). ArticleCAS Google Scholar
Grawunder, U., Zimmer, D., Fugmann, S., Schwarz, K. & Lieber, M.R. DNA ligase IV is essential for V(D)J recombination and DNA double-strand break repair in human precursor lymphocytes. Mol. Cell2, 477–484 (1998). ArticleCAS Google Scholar
Konrad, E.B., Modrich, P. & Lehman, I.R. Genetic and enzymatic characterization of a conditional lethal mutant of Escherichia coli K12 with a temperature-sensitive DNA ligase. J. Mol. Biol.77, 519–529 (1973). ArticleCAS Google Scholar
Magnet, S. & Blanchard, J.S. Mechanistic and kinetic study of the ATP-dependent DNA ligase of Neisseria meningitidis. Biochemistry43, 710–717 (2004). ArticleCAS Google Scholar
Wilkinson, A., Day, J. & Bowater, R. Bacterial DNA ligases. Mol. Microbiol.40, 1241–1248 (2001). ArticleCAS Google Scholar
Cheng, C. & Shuman, S. Characterization of an ATP-dependent DNA ligase encoded by Haemophilus influenzae. Nucleic Acids Res.25, 1369–1374 (1997). ArticleCAS Google Scholar
Gong, C., Martins, A., Bongiorno, P., Glickman, M. & Shuman, S. Biochemical and genetic analysis of the four DNA ligases of mycobacteria. J. Biol. Chem.279, 20594–20606 (2004). ArticleCAS Google Scholar
Aravind, L. & Koonin, E.V. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res.11, 1365–1374 (2001). ArticleCAS Google Scholar
Doherty, A.J., Jackson, S.P. & Weller, G.R. Identification of bacterial homologues of the Ku DNA repair proteins. FEBS Lett.500, 186–188 (2001). ArticleCAS Google Scholar
Della, M. et al. Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine. Science306, 683–685 (2004). ArticleCAS Google Scholar
Zhu, H. & Shuman, S. A primer-dependent polymerase function of Pseudomonas aeruginosa ATP-dependent DNA ligase (LigD). J. Biol. Chem.280, 418–427 (2005). ArticleCAS Google Scholar
Weller, G.R. et al. Identification of a DNA nonhomologous end-joining complex in bacteria. Science297, 1686–1689 (2002). ArticleCAS Google Scholar
Braunstein, M., Brown, A.M., Kurtz, S. & Jacobs, W.R. Jr. Two nonredundant SecA homologues function in mycobacteria. J. Bacteriol.183, 6979–6990 (2001). ArticleCAS Google Scholar
Lipps, G., Weinzierl, A.O., von Scheven, G., Buchen, C. & Cramer, P. Structure of a bifunctional DNA primase-polymerase. Nat. Struct. Mol. Biol.11, 157–162 (2004). ArticleCAS Google Scholar
Ito, N., Nureki, O., Shirouzu, M., Yokoyama, S. & Hanaoka, F. Crystal structure of the Pyrococcus horikoshii DNA primase-UTP complex: implications for the mechanism of primer synthesis. Genes Cells8, 913–923 (2003). ArticleCAS Google Scholar
Augustin, M.A., Huber, R. & Kaiser, J.T. Crystal structure of a DNA-dependent RNA polymerase (DNA primase). Nat. Struct. Biol.8, 57–61 (2001). ArticleCAS Google Scholar
Glickman, M.S. The mmaA2 gene of Mycobacterium tuberculosis encodes the distal cyclopropane synthase of the α-mycolic acid. J. Biol. Chem.278, 7844–7849 (2003). ArticleCAS Google Scholar
Manolis, K.G. et al. Novel functional requirements for non-homologous DNA end joining in Schizosaccharomyces pombe. EMBO J.20, 210–221 (2001). ArticleCAS Google Scholar
Walker, J.R., Corpina, R.A. & Goldberg, J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature412, 607–614 (2001). ArticleCAS Google Scholar
Aylon, Y., Liefshitz, B. & Kupiec, M. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J.23, 4868–4875 (2004). ArticleCAS Google Scholar
Heidenreich, E., Novotny, R., Kneidinger, B., Holzmann, V. & Wintersberger, U. Non-homologous end joining as an important mutagenic process in cell cycle– arrested cells. EMBO J.22, 2274–2283 (2003). ArticleCAS Google Scholar
Ferreira, M.G. & Cooper, J.P. Two modes of DNA double-strand break repair are reciprocally regulated through the fission yeast cell cycle. Genes Dev.18, 2249–2254 (2004). ArticleCAS Google Scholar
Timm, J., Lim, E.M. & Gicquel, B. _Escherichia coli_– mycobacteria shuttle vectors for operon and gene fusions to lacZ: the pJEM series. J. Bacteriol.176, 6749–6753 (1994). ArticleCAS Google Scholar
Golemis, E. et al. The interaction trap. In Current Protocols in Molecular Biology (eds. Ausubel, F.M. et al.) 20.1.1–20.1.2 (Wiley, New York, 1999). Google Scholar