A 'loop recapture' mechanism for ACF-dependent nucleosome remodeling (original) (raw)

References

  1. Becker, P.B. & Hörz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002).
    Article CAS Google Scholar
  2. Längst, G. & Becker, P.B. Nucleosome remodeling: one mechanism, many phenomena? Biochim. Biophys. Acta 1677, 58–63 (2004).
    Article Google Scholar
  3. Widom, J. Role of DNA sequence in nucleosome stability and dynamics. Q. Rev. Biophys. 34, 269–324 (2001).
    Article CAS Google Scholar
  4. Van Holde, K.E. & Yager, T.D. Nucleosome motion: evidence models. in Structure and Function of the Genetic Apparatus (eds. Nicolini, C. & Ts'o, P.O.P.) (Plenum, New York, 1985).
    Google Scholar
  5. Schiessel, H., Widom, J., Bruinsma, R.F. & Gelbart, W.M. Polymer reptation and nucleosome repositioning. Phys. Rev. Lett. 86, 4414–4417 (2001).
    Article CAS Google Scholar
  6. Widom, J. Structure, dynamics, and function of chromatin in vitro. Annu. Rev. Biophys. Biomol. Struct. 27, 285–327 (1998).
    Article CAS Google Scholar
  7. Studitsky, V.M., Clark, D.J. & Felsenfeld, G. A histone octamer can step around a transcribing polymerase without leaving the template. Cell 76, 371–382 (1994).
    Article CAS Google Scholar
  8. Li, G., Levitus, M., Bustamante, C. & Widom, J. Rapid spontaneous accessibility of nucleosomal DNA. Nat. Struct. Mol. Biol. 12, 46–53 (2005).
    Article CAS Google Scholar
  9. Brower-Toland, B.D. et al. Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc. Natl. Acad. Sci. USA 99, 1960–1965 (2002).
    Article CAS Google Scholar
  10. Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W. & Richmond, T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol. 319, 1097–1113 (2002).
    Article CAS Google Scholar
  11. Tsukiyama, T., Daniel, C., Tamkun, J. & Wu, C. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell 83, 1021–1026 (1995).
    Article CAS Google Scholar
  12. Ito, T., Bulger, M., Pazin, M.J., Kobayashi, R. & Kadonaga, J.T. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155 (1997).
    Article CAS Google Scholar
  13. Varga-Weisz, P. et al. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388, 598–602 (1997).
    Article CAS Google Scholar
  14. Ito, T. et al. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev. 13, 1529–1539 (1999).
    Article CAS Google Scholar
  15. Havas, K. et al. Generation of superhelical torsion by ATP-dependent chromatin remodeling activities. Cell 103, 1133–1142 (2000).
    Article CAS Google Scholar
  16. Aoyagi, S. & Hayes, J.J. hSWI/SNF-catalyzed nucleosome sliding does not occur solely via a twist-diffusion mechanism. Mol. Cell. Biol. 22, 7484–7490 (2002).
    Article CAS Google Scholar
  17. Schwanbeck, R., Xiao, H. & Wu, C. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J. Biol. Chem. 279, 39933–39941 (2004).
    Article CAS Google Scholar
  18. Längst, G. & Becker, P.B. ISWI induces nucleosome sliding on nicked DNA. Mol. Cell 8, 1085–1092 (2001).
    Article Google Scholar
  19. Längst, G., Bonte, E.J., Corona, D.F. & Becker, P.B. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97, 843–852 (1999).
    Article Google Scholar
  20. Eberharter, A. et al. Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. EMBO J. 20, 3781–3788 (2001).
    Article CAS Google Scholar
  21. Rigler, R. & Elson, E.S. Fluorescence Correlation Spectroscopy: Theory and Applications (Springer, Berlin, 2001).
    Book Google Scholar
  22. Rippe, K. Simultaneous binding of two DNA duplexes to the NtrC–enhancer complex studied by two-color fluorescence cross-correlation spectroscopy. Biochemistry 39, 2131–2139 (2000).
    Article CAS Google Scholar
  23. Weidemann, T., Wachsmuth, M., Tewes, M., Rippe, K. & Langowski, J. Analysis of ligand binding by two-colour fluorescence cross-correlation spectroscopy. Single Molecules 3, 49–61 (2002).
    Article CAS Google Scholar
  24. Schwille, P., Meyer-Almes, F.J. & Rigler, R. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J. 72, 1878–1886 (1997).
    Article CAS Google Scholar
  25. Rippe, K., Mucke, N. & Schulz, A. Association states of the transcription activator protein NtrC from E. coli determined by analytical ultracentrifugation. J. Mol. Biol. 278, 915–933 (1998).
    Article CAS Google Scholar
  26. McMurray, C.T. & van Holde, K.E. Binding of ethidium bromide causes dissociation of the nucleosome core particle. Proc. Natl. Acad. Sci. USA 83, 8472–8476 (1986).
    Article CAS Google Scholar
  27. McMurray, C.T. & van Holde, K.E. Binding of ethidium to the nucleosome core particle. 1. Binding and dissociation reactions. Biochemistry 30, 5631–5643 (1991).
    Article CAS Google Scholar
  28. Deniss, I.S. & Morgan, A.R. Studies on the mechanism of DNA cleavage by ethidium. Nucleic Acids Res. 3, 315–323 (1976).
    Article CAS Google Scholar
  29. Krishnamurthy, G., Polte, T., Rooney, T. & Hogan, M.E. A photochemical method to map ethidium bromide binding sites on DNA: application to a bent DNA fragment. Biochemistry 29, 981–988 (1990).
    Article CAS Google Scholar
  30. Boles, T.C. & Hogan, M.E. Site-specific carcinogen binding to DNA. Proc. Natl. Acad. Sci. USA 81, 5623–5627 (1984).
    Article CAS Google Scholar
  31. Kagalwala, M.N., Glaus, B.J., Dang, W., Zofall, M. & Bartholomew, B. Topography of the ISW2–nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J. 23, 2092–2104 (2004).
    Article CAS Google Scholar
  32. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).
    Article CAS Google Scholar
  33. Clapier, C.R., Längst, G., Corona, D.F., Becker, P.B. & Nightingale, K.P. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol. Cell. Biol. 21, 875–883 (2001).
    Article CAS Google Scholar
  34. Clapier, C.R., Nightingale, K.P. & Becker, P.B. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucleic Acids Res. 30, 649–655 (2002).
    Article CAS Google Scholar
  35. Ebralidse, K.K., Grachev, S.A. & Mirzabekov, A.D. A highly basic histone H4 domain bound to the sharply bent region of nucleosomal DNA. Nature 331, 365–367 (1988).
    Article CAS Google Scholar
  36. LeRoy, G., Loyola, A., Lane, W.S. & Reinberg, D. Purification and characterization of a human factor that assembles and remodels chromatin. J. Biol. Chem. 275, 14787–14790 (2000).
    Article CAS Google Scholar
  37. Poot, R.A. et al. HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins. EMBO J. 19, 3377–3387 (2000).
    Article CAS Google Scholar
  38. Längst, G., Schatz, T., Langowski, J. & Grummt, I. Structural analysis of mouse rDNA: coincidence between nuclease hypersensitive sites, DNA curvature and regulatory elements in the intergenic spacer. Nucleic Acids Res. 25, 511–517 (1997).
    Article Google Scholar
  39. Flaus, A. & Owen-Hughes, T. Mechanisms for ATP-dependent chromatin remodelling: farewell to the tuna-can octamer? Curr. Opin. Genet. Dev. 14, 165–173 (2004).
    Article CAS Google Scholar
  40. Lorch, Y., Davis, B. & Kornberg, R.D. Chromatin remodeling by DNA bending, not twisting. Proc. Natl. Acad. Sci. USA 102, 1329–1332 (2005).
    Article CAS Google Scholar
  41. Kassabov, S.R., Zhang, B., Persinger, J. & Bartholomew, B. SWI/SNF unwraps, slides, and rewraps the nucleosome. Mol. Cell 11, 391–403 (2003).
    Article CAS Google Scholar
  42. Flaus, A. & Owen-Hughes, T. Dynamic properties of nucleosomes during thermal and ATP-driven mobilization. Mol. Cell. Biol. 23, 7767–7779 (2003).
    Article CAS Google Scholar
  43. Flaus, A. & Owen-Hughes, T. Mechanisms for ATP-dependent chromatin remodelling. Curr. Opin. Genet. Dev. 11, 148–154 (2001).
    Article CAS Google Scholar
  44. Singleton, M.R. & Wigley, D.B. Modularity and specialization in superfamily 1 and 2 helicases. J. Bacteriol. 184, 1819–1826 (2002).
    Article CAS Google Scholar
  45. Fitzgerald, D.J. et al. Reaction cycle of the yeast Isw2 chromatin remodeling complex. EMBO J. 23, 3836–3843 (2004).
    Article CAS Google Scholar

Download references