The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis (original) (raw)
Arnold RS, Shi J, Murad E, Whalen AM, Sun CQ, Polavarapu R et al. (2001). Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc Natl Acad Sci USA98: 5550–5555. ArticleCASPubMedPubMed Central Google Scholar
Baker AM, Oberley LW, Cohen MB . (1997). Expression of antioxidant enzymes in human prostatic adenocarcinoma. Prostate32: 229–233. ArticleCASPubMed Google Scholar
Bostwick DG, Alexander EE, Singh R, Shan A, Qian J, Santella RM et al. (2000). Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer. Cancer89: 123–134. ArticleCASPubMed Google Scholar
Bostwick DG, Meiers I, Shanks JH . (2007). Glutathione S-transferase: differential expression of alpha, mu, and pi isoenzymes in benign prostate, prostatic intraepithelial neoplasia, and prostatic adenocarcinoma. Hum Pathol38: 1394–1401. ArticleCASPubMed Google Scholar
Brooks JD, Paton VG, Vidanes G . (2001). Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiol Biomarkers Prev10: 949–954. CASPubMed Google Scholar
Chan K, Lu R, Chang JC, Kan YW . (1996). NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. Proc Natl Acad Sci USA93: 13943–13948. ArticleCASPubMedPubMed Central Google Scholar
Chanas SA, Jiang Q, McMahon M, McWalter GK, McLellan LI, Elcombe CR et al. (2002). Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice. Biochem J365: 405–416. ArticleCASPubMedPubMed Central Google Scholar
Day KC, McCabe MT, Zhao X, Wang Y, Davis JN, Phillips J et al. (2002). Rescue of embryonic epithelium reveals that the homozygous deletion of the retinoblastoma gene confers growth factor independence and immortality but does not influence epithelial differentiation or tissue morphogenesis. J Biol Chem277: 44475–44484. ArticleCASPubMed Google Scholar
De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gronberg H, Drake CG et al. (2007). Inflammation in prostate carcinogenesis. Nat Rev Cancer7: 256–269. ArticleCASPubMedPubMed Central Google Scholar
Dhakshinamoorthy S, Long II DJ, Jaiswal AK . (2000). Antioxidant regulation of genes encoding enzymes that detoxify xenobiotics and carcinogens. Curr Top Cell Regul36: 201–216. ArticleCASPubMed Google Scholar
Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K et al. (2001). Delineation of prognostic biomarkers in prostate cancer. Nature412: 822–826. ArticleCASPubMed Google Scholar
Glinsky GV, Glinskii AB, Stephenson AJ, Hoffman RM, Gerald WL . (2004). Gene expression profiling predicts clinical outcome of prostate cancer. J Clin Invest113: 913–923. ArticleCASPubMedPubMed Central Google Scholar
Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO et al. (1995). Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA92: 3439–3443. ArticleCASPubMedPubMed Central Google Scholar
Guyton KZ, Kensler TW . (1993). Oxidative mechanisms in carcinogenesis. Br Med Bull49: 523–544. ArticleCASPubMed Google Scholar
Hayes JD, Flanagan JU, Jowsey IR . (2004). Glutathione transferases. Annu Rev Pharmacol Toxicol45: 51–88. Article Google Scholar
Hayes JD, Pulford DJ . (1995). The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol30: 445–600. ArticleCASPubMed Google Scholar
Ho SM, Leung YK, Chung I . (2006). Estrogens and antiestrogens as etiological factors and therapeutics for prostate cancer. Ann N Y Acad Sci1089: 177–193. ArticleCASPubMed Google Scholar
Iida K, Itoh K, Kumagai Y, Oyasu R, Hattori K, Kawai K et al. (2004). Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Res64: 6424–6431. ArticleCASPubMed Google Scholar
Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y et al. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun236: 313–322. ArticleCASPubMed Google Scholar
Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD et al. (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev13: 76–86. ArticleCASPubMedPubMed Central Google Scholar
Jaiswal AK . (2000). Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic Biol Med29: 254–262. ArticleCASPubMed Google Scholar
Klaunig JE, Kamendulis LM . (2004). The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol44: 239–267. ArticleCASPubMed Google Scholar
Kwak MK, Wakabayashi N, Itoh K, Motohashi H, Yamamoto M, Kensler TW . (2003). Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J Biol Chem278: 8135–8145. ArticleCASPubMed Google Scholar
Kwak MK, Wakabayashi N, Kensler TW . (2004). Chemoprevention through the Keap1-Nrf2 signaling pathway by phase 2 enzyme inducers. Mutat Res555: 133–148. ArticleCASPubMed Google Scholar
Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K et al. (2004). Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA101: 811–816. ArticleCASPubMedPubMed Central Google Scholar
LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V et al. (2002). Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res62: 4499–4506. CASPubMed Google Scholar
Lee JM, Anderson PC, Padgitt JK, Hanson JM, Waters CM, Johnson JA . (2003a). Nrf2, not the estrogen receptor, mediates catechol estrogen-induced activation of the antioxidant responsive element. Biochim Biophys Acta1629: 92–101. ArticleCASPubMed Google Scholar
Lee JM, Calkins MJ, Chan K, Kan YW, Johnson JA . (2003b). Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem278: 12029–12038. ArticleCASPubMed Google Scholar
Luo J, Duggan DJ, Chen Y, Sauvageot J, Ewing CM, Bittner ML et al. (2001). Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res61: 4683–4688. CASPubMed Google Scholar
Ma Q, Battelli L, Hubbs AF . (2006). Multiorgan autoimmune inflammation, enhanced lymphoproliferation, and impaired homeostasis of reactive oxygen species in mice lacking the antioxidant-activated transcription factor Nrf2. Am J Pathol168: 1960–1974. ArticleCASPubMedPubMed Central Google Scholar
Magee JA, Araki T, Patil S, Ehrig T, True L, Humphrey PA et al. (2001). Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Res61: 5692–5696. CASPubMed Google Scholar
McCabe M, Azih OJ, Day ML . (2005a). pRb-independent growth arrest and transcriptional regulation of E2F target genes. Neoplasia7: 141–151. ArticleCASPubMedPubMed Central Google Scholar
McCabe MT, Davis JN, Day ML . (2005b). Regulation of DNA methyltransferase 1 by the pRb/E2F1 pathway. Cancer Res65: 3624–3632. ArticleCASPubMed Google Scholar
McCabe MT, Low JA, Daignault S, Imperiale MJ, Wojno KJ, Day ML . (2006). Inhibition of DNA methyltransferase activity prevents tumorigenesis in a mouse model of prostate cancer. Cancer Res66: 385–392. ArticleCASPubMed Google Scholar
Myhre O, Andersen JM, Aarnes H, Fonnum F . (2003). Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol65: 1575–1582. ArticleCASPubMed Google Scholar
Osburn WO, Karim B, Dolan PM, Liu G, Yamamoto M, Huso DL et al. (2007). Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment. Int J Cancer121: 1883–1891. ArticleCASPubMed Google Scholar
Ouyang X, DeWeese TL, Nelson WG, Abate-Shen C . (2005). Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis. Cancer Res65: 6773–6779. ArticleCASPubMed Google Scholar
Ramos-Gomez M, Kwak MK, Dolan PM, Itoh K, Yamamoto M, Talalay P et al. (2001). Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci USA98: 3410–3415. ArticleCASPubMedPubMed Central Google Scholar
Rangasamy T, Guo J, Mitzner WA, Roman J, Singh A, Fryer AD et al. (2005). Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J Exp Med202: 47–59. ArticleCASPubMedPubMed Central Google Scholar
Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia6: 1–6. ArticleCASPubMedPubMed Central Google Scholar
Tam NN, Nyska A, Maronpot RR, Kissling G, Lomnitski L, Suttie A et al. (2006). Differential attenuation of oxidative/nitrosative injuries in early prostatic neoplastic lesions in TRAMP mice by dietary antioxidants. Prostate66: 57–69. ArticleCASPubMed Google Scholar
Thimmulappa RK, Scollick C, Traore K, Yates M, Trush MA, Liby KT et al. (2006). Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-Imidazolide. Biochem Biophys Res Commun351: 883–889. ArticleCASPubMedPubMed Central Google Scholar
Vanaja DK, Ballman KV, Morlan BW, Cheville JC, Neumann RM, Lieber MM et al. (2006). PDLIM4 repression by hypermethylation as a potential biomarker for prostate cancer. Clin Cancer Res12: 1128–1136. ArticleCASPubMed Google Scholar
Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA et al. (2005). Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell8: 393–406. ArticleCASPubMed Google Scholar
Venugopal R, Jaiswal AK . (1996). Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci USA93: 14960–14965. ArticleCASPubMedPubMed Central Google Scholar
Wang Y, Hayward SW, Donjacour AA, Young P, Jacks T, Sage J et al. (2000). Sex hormone-induced carcinogenesis in Rb-deficient prostate tissue. Cancer Res60: 6008–6017. CASPubMed Google Scholar
Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA et al. (2001). Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res61: 5974–5978. CASPubMed Google Scholar
Yates MS, Kwak MK, Egner PA, Groopman JD, Bodreddigari S, Sutter TR et al. (2006). Potent protection against aflatoxin-induced tumorigenesis through induction of Nrf2-regulated pathways by the triterpenoid 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole. Cancer Res66: 2488–2494. ArticleCASPubMed Google Scholar
Yu X, Kensler T . (2005). Nrf2 as a target for cancer chemoprevention. Mutat Res591: 93–102. ArticleCASPubMed Google Scholar
Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L et al. (2004). Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol22: 2790–2799. ArticleCASPubMed Google Scholar
Zhu M, Fahl WE . (2001). Functional characterization of transcription regulators that interact with the electrophile response element. Biochem Biophys Res Commun289: 212–219. ArticleCASPubMed Google Scholar