- Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 1998; 391: 184–187.
Article CAS PubMed Google Scholar
- Alessi DR, Sakamoto K, Bayascas JR . LKB1-dependent signaling pathways. Annu Rev Biochem 2006; 75: 137–163.
Article CAS PubMed Google Scholar
- Sanchez-Cespedes M . A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene 2007; 26: 7825–7832.
Article CAS PubMed Google Scholar
- Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P et al. LKB1 modulates lung cancer differentiation and metastasis. Nature 2007; 448: 807–810.
Article CAS PubMed Google Scholar
- Wingo SN, Gallardo TD, Akbay EA, Liang MC, Contreras CM, Boren T et al. Somatic LKB1 mutations promote cervical cancer progression. PLoS ONE 2009; 4: e5137.
Article PubMed PubMed Central Google Scholar
- Gu Y, Lin S, Li JL, Nakagawa H, Chen Z, Jin B et al. Altered LKB1/CREB-regulated transcription co-activator (CRTC) signaling axis promotes esophageal cancer cell migration and invasion. Oncogene 2012; 31: 469–479.
Article CAS PubMed Google Scholar
- Bardeesy N, Sinha M, Hezel AF, Signoretti S, Hathaway NA, Sharpless NE et al. Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature 2002; 419: 162–167.
Article CAS PubMed Google Scholar
- Shackelford DB, Shaw RJ . The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009; 9: 563–575.
Article CAS PubMed PubMed Central Google Scholar
- Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 2010; 468: 701–704.
Article CAS PubMed PubMed Central Google Scholar
- Gurumurthy S, Xie SZ, Alagesan B, Kim J, Yusuf RZ, Saez B et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 2010; 468: 659–663.
Article CAS PubMed PubMed Central Google Scholar
- Nakada D, Saunders TL, Morrison SJ . Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 2010; 468: 653–658.
Article CAS PubMed PubMed Central Google Scholar
- Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Mäkelä TP et al. Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2003; 2: 28.
Article PubMed PubMed Central Google Scholar
- Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 2003; 13: 2004–2008.
Article CAS PubMed Google Scholar
- Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 2004; 101: 3329–3335.
Article CAS PubMed PubMed Central Google Scholar
- Lizcano JM, Göransson O, Toth R, Deak M, Morrice NA, Boudeau J et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 2004; 23: 833–843.
Article CAS PubMed PubMed Central Google Scholar
- Laderoute KR, Amin K, Calaoagan JM, Knapp M, Le T, Orduna J et al. 5'-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol Cell Biol 2006; 26: 5336–5347.
Article CAS PubMed PubMed Central Google Scholar
- Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M et al. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 2007; 9: 218–224.
Article CAS PubMed Google Scholar
- Zhao RX, Xu ZX . Targeting the LKB1 tumor suppressor. Curr Drug Targets 2014; 15: 32–52.
Article PubMed PubMed Central Google Scholar
- Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 2005; 18: 283–293.
Article CAS PubMed Google Scholar
- Ui A, Ogiwara H, Nakajima S, Kanno S, Watanabe R, Harata M et al. Possible involvement of LKB1-AMPK signaling in non-homologous end joining. Oncogene 2014; 33: 1640–1648.
Article CAS PubMed Google Scholar
- Trachootham D, Alexandre J, Huang P . Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?. Nat Rev Drug Discov 2009; 8: 579–591.
Article CAS PubMed Google Scholar
- Renschler MF . The emerging role of reactive oxygen species in cancer therapy. Eur J Cancer 2004; 40: 1934–1940.
Article CAS PubMed Google Scholar
- Halliwell B . Oxidative stress and cancer: have we moved forward? Biochem J 2007; 401: 1–11.
Article CAS PubMed Google Scholar
- Ray PD, Huang BW, Tsuji Y . Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012; 24: 981–990.
Article CAS PubMed PubMed Central Google Scholar
- Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM . The antioxidant function of the p53 tumor suppressor. Nat Med 2005; 11: 1306–1313.
Article CAS PubMed PubMed Central Google Scholar
- Montero J, Dutta C, van Bodegom D, Weinstock D, Letai A . p53 regulates a non-apoptotic death induced by ROS. Cell Death Differ 2013; 20: 1465–1474.
Article CAS PubMed PubMed Central Google Scholar
- Jimenez AI, Fernandez P, Dominguez O, Dopazo A, Sanchez-Cespedes M . Growth and molecular profile of lung cancer cells expressing ectopic LKB1: down-regulation of the phosphatidylinositol 3'-phosphate kinase/PTEN pathway. Cancer Res 2003; 63: 1382–1388.
CAS PubMed Google Scholar
- Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 2009; 137: 835–848.
Article CAS PubMed PubMed Central Google Scholar
- Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W . Superoxide dismutase as a target for the selective killing of cancer cells. Nature 2000; 407: 390–395.
Article CAS PubMed Google Scholar
- Li XN, Song J, Zhang L, LeMaire SA, Hou X, Zhang C et al. Activation of the AMPK-FOXO3 pathway reduces fatty acid-induced increase in intracellular reactive oxygen species by upregulating thioredoxin. Diabetes 2010; 58: 2246–2257.
Article Google Scholar
- Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR . p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 2007; 11: 191–205.
Article CAS PubMed Google Scholar
- Gutiérrez-Uzquiza Á, Arechederra M, Bragado P, Aguirre-Ghiso JA, Porras A . p38 alpha mediates cell survival in response to oxidative stress via induction of antioxidant genes: effect on the p70S6K pathway. J Biol Chem 2012; 287: 2632–2642.
Article PubMed Google Scholar
- Hsieh CC, Kuro-o M, Rosenblatt KP, Brobey R, Papaconstantinou J . The ASK1-Signalosome regulates p38 MAPK activity in response to levels of endogenous oxidative stress in the Klotho mouse models of aging. Aging (Albany NY) 2010; 2: 597–611.
Article CAS Google Scholar
- Baas AF, Boudeau J, Sapkota GP, Smit L, Medema R, Morrice NA et al. Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J 2003; 22: 3062–3072.
Article CAS PubMed PubMed Central Google Scholar
- Cuadrado A, Nebreda AR . Mechanisms and functions of p38 MAPK signaling. Biochem J 2010; 429: 403–417.
Article CAS PubMed Google Scholar
- Zarubin T, Han J . Activation and signaling of the p38 MAP kinase pathway. Cell Research 2005; 15: 11–18.
Article CAS PubMed Google Scholar
- Zhang S, Han J, Sells MA, Chernoff J, Knaus UG, Ulevitch RJ et al. Rho family GTPases regulate p38 MAP kinase through the downstream mediator Pak1. J Biol Chem 1995; 270: 23934–23936.
Article CAS PubMed Google Scholar
- Bagrodia S, Derijard B, Davis RJ, Cerione RA . Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation. J Biol Chem 1995; 270: 27995–27998.
Article CAS PubMed Google Scholar
- Tibbles LA, Ing YL, Kiefer F, Chan J, Iscove N, Woodgett JR et al. MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. EMBO J 1996; 15: 7026–7035.
Article CAS PubMed PubMed Central Google Scholar
- Martin GA, Bollag G, McCormick F, Abo A . A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20. EMBO J 1995; 14: 1970–1978.
Article CAS PubMed PubMed Central Google Scholar
- Manser E, Leung T, Salihuddin H, Zhao Z, Lim L . A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 1994; 367: 40–46.
Article CAS PubMed Google Scholar
- Zhang S, Schafer-Hales K, Khuri FR, Zhou W, Vertino PM, Marcus AI . The tumor suppressor LKB1 regulates lung cancer cell polarity by mediating cdc42 recruitment and activity. Cancer Res 2008; 68: 740–748.
Article CAS PubMed Google Scholar
- Cao X, Rui L, Pennington PR, Chlan-Fourney J, Jiang Z, Wei Z et al. Serine 209 resides within a putative p38(MAPK) consensus motif and regulates monoamine oxidase-A activity. J Neurochem 2009; 111: 101–110.
Article CAS PubMed Google Scholar
- Archer H, Bar-Sagi D . Ras and Rac as activators of reactive oxygen species (ROS). Methods Mol Biol 2002; 189: 67–73.
CAS PubMed Google Scholar
- Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 2011; 475: 231–234.
Article CAS PubMed PubMed Central Google Scholar
- Adams DJ, Dai M, Pellegrino G, Wagner BK, Stern AM, Shamji AF et al. Synthesis, cellular evaluation, and mechanism of action of piperlongumine analogs. Proc Natl Acad Sci USA 2012; 109: 15115–15120.
Article CAS PubMed PubMed Central Google Scholar
- Wang Y, Wang JW, Xiao X, Shan Y, Xue B, Jiang G et al. Piperlongumine induces autophagy by targeting p38 signaling. Cell Death Dis 2013; 4: e824.
Article CAS PubMed PubMed Central Google Scholar
- Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 2013; 17: 113–124.
Article CAS PubMed Google Scholar
- Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci USA 2010; 107: 4153–4158.
Article CAS PubMed PubMed Central Google Scholar
- Sen P, Chakraborty PK, Raha S . p38 mitogen-activated protein kinase (p38MAPK) upregulates catalase levels in response to low dose H2O2 treatment through enhancement of mRNA stability. FEBS Lett 2005; 579: 4402–4406.
Article CAS PubMed Google Scholar
- Shackelford DB, Abt E, Gerken L, Vasquez DS, Seki A, Leblanc M et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 2013; 23: 143–158.
Article CAS PubMed PubMed Central Google Scholar
- Xiao X, He Q, Lu C, Werle KD, Zhao RX, Chen J et al. Metformin impairs the growth of liver kinase B1-intact cervical cancer cells. Gynecol Oncol 2012; 127: 249–255.
Article CAS PubMed PubMed Central Google Scholar
- Pan J, She M, Xu ZX, Sun L, Yeung SC . Farnesyltransferase inhibitors induce DNA damage via reactive oxygen species in human cancer cells. Cancer Res 2005; 65: 3671–3681.
Article CAS PubMed Google Scholar
- Slaughter MR, O’Brien PJ . Fully-automated spectrophotometric method for measurement of antioxidant activity of catalase. Clin Biochem 2000; 33: 525–534.
Article CAS PubMed Google Scholar
- Madesh M, Balasubramanian KA . Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J Biochem Biophys 1998; 35: 184–188.
CAS PubMed Google Scholar
- Jian W, Xu HG, Chen J, Xu ZX, Levitt JM, Stanley JA et al. Activity of CEP-9722, a poly (ADP-ribose) polymerase inhibitor, in urothelial carcinoma correlates inversely with homologous recombination repair response to DNA damage. Anticancer Drugs 2014; 25: 878–886.
Article CAS PubMed Google Scholar