Yang Y, Li CC, Weissman AM. Regulating the p53 system through ubiquitination. Oncogene. 2004;23:2096–106. ArticleCASPubMed Google Scholar
Carter S, Bischof O, Dejean A, Vousden KH. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol. 2007;9:428–35. ArticleCASPubMed Google Scholar
Yuan X, Cai C, Chen S, Chen S, Yu Z, Balk SP. Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene. 2014;33:2815–25. ArticleCASPubMed Google Scholar
Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, et al Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004;10:33–9. ArticlePubMed Google Scholar
Cai C, He HH, Chen S, Coleman I, Wang H, Fang Z, et al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell. 2011;20:457–71. ArticleCASPubMed CentralPubMed Google Scholar
Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009;138:245–56. ArticleCASPubMed CentralPubMed Google Scholar
Linja MJ, Savinainen KJ, Saramäki OR, Tammela TL, Vessella RL, Visakorpi T. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res. 2001;61:3550–5. CASPubMed Google Scholar
Takayama K, Inoue S. The emerging role of noncoding RNA in prostate cancer progression and its implication on diagnosis and treatment. Brief Funct Genom. 2016;15:257–65. ArticleCAS Google Scholar
Takayama K, Inoue S. Transcriptional network of androgen receptor in prostate cancer progression. Int J Urol. 2013;20:756–68. ArticleCASPubMed Google Scholar
Ashikari D, Takayama K, Tanaka T, Obinata D, Fujimura T, et al. Androgen induces G3BP2 and SUMO-mediated p53 nuclear export in prostate cancer. Oncogene. 2017;36:6272–81. ArticleCASPubMed Google Scholar
Ikeda K, Inoue S, Orimo A, Tsutsumi K, Muramatsu M. Promoter analysis of mouse estrogen-responsive finger protein (efp) gene: mouse efp promoter contains an E-box that is also conserved in human. Gene. 1998;216:155–62. ArticleCASPubMed Google Scholar
Orimo A, Inoue S, Minowa O, Tominaga N, Tomioka Y, Sato M, et al Underdeveloped uterus and reduced estrogen responsiveness in mice with disruption of the estrogen-responsive finger protein gene, which is a direct target of estrogen receptor alpha. Proc Natl Acad Sci USA. 1999;96:12027–32. ArticleCASPubMedPubMed Central Google Scholar
Inoue S, Orimo A, Matsuda Y, Inazawa J, Emi M, Nakamura Y, et al Chromosome mapping of human (ZNF147) and mouse genes for estrogen-responsive finger protein (efp), a member of the RING finger family. Genomics. 1995;25:581–3. ArticleCASPubMed Google Scholar
Shimada N, Suzuki T, Inoue S, Kato K, Imatani A, Sekine H, et al. Systemic distribution of estrogen-responsive finger protein (Efp) in human tissues. Mol Cell Endocrinol. 2004;218:147–53. ArticleCASPubMed Google Scholar
Urano T, Saito T, Tsukui T, Fujita M, Hosoi T, Muramatsu M, et al Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth. Nature. 2002;417:871–5. ArticleCASPubMed Google Scholar
Ikeda K, Orimo A, Higashi Y, Muramatsu M, Inoue S. Efp as a primary estrogen-responsive gene in human breast cancer. FEBS Lett. 2000;472:9–13. ArticleCASPubMed Google Scholar
Suzuki T, Urano T, Tsukui T, Horie-Inoue K, Moriya T, Ishida T, et al. Estrogen-responsive finger protein as a new potential biomarker for breast cancer. Clin Cancer Res. 2005;11:6148–54. ArticleCASPubMed Google Scholar
Sakuma M, Akahira J, Suzuki T, Inoue S, Ito K, Moriya T, et al. Expression of estrogen-responsive finger protein (Efp) is associated with advanced disease in human epithelial ovarian cancer. Gynecol Oncol. 2005;99:664–70. ArticleCASPubMed Google Scholar
Wang S, Kollipara RK, Humphries CG, Ma SH, Hutchinson R, Li R, et al The ubiquitin ligase TRIM25 targets ERG for degradation in prostate cancer. Oncotarget. 2016;7:64921–31. PubMedPubMed Central Google Scholar
Horie-Inoue K, Inoue S. Epigenetic and proteolytic inactivation of 14-3-3sigma in breast and prostate cancers. Semin Cancer Biol. 2006;16:235–9. ArticleCASPubMed Google Scholar
Zurita M, Lara PC, del Moral R, Torres B, Linares-Fernández JL, Arrabal SR, et al. Hypermethylated 14-3-3-sigma and ESR1 gene promoters in serum as candidate biomarkers for the diagnosis and treatment efficacy of breast cancer metastasis. BMC Cancer. 2010;10:217 ArticlePubMed CentralPubMed Google Scholar
Moreira JM, Ohlsson G, Rank FE, Celis JE. Down-regulation of the tumor suppressor protein 14-3-3sigma is a sporadic event in cancer of the breast. Mol Cell Proteom. 2005;4:555–69. ArticleCAS Google Scholar
Simooka H, Oyama T, Sano T, Horiguchi J, Nakajima T. Immunohistochemical analysis of 14-3-3 sigma and related proteins in hyperplastic and neoplastic breast lesions, with particular reference to early carcinogenesis. Pathol Int. 2004;54:595–602. ArticleCASPubMed Google Scholar
Umbricht CB, Evron E, Gabrielson E, Ferguson A, Marks J, Sukumar S. Hypermethylation of 14-3-3 sigma (stratifin) is an early event in breast cancer. Oncogene. 2001;20:3348–53. ArticleCASPubMed Google Scholar
Ferguson AT, Evron E, Umbricht CB, Pandita TK, Chan TA, Hermeking H, et al High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. Proc Natl Acad Sci USA. 2000;97:6049–54. ArticleCASPubMedPubMed Central Google Scholar
Henrique R, Jerónimo C, Hoque MO, Carvalho AL, Oliveira J, Teixeira MR, et al. Frequent 14-3-3 sigma promoter methylation in benign and malignant prostate lesions. DNA Cell Biol. 2005;24:264–9. ArticleCASPubMed Google Scholar
Cheng L, Pan CX, Zhang JT, Zhang S, Kinch MS, Li L, et al. Loss of 14-3-3sigma in prostate cancer and its precursors. Clin Cancer Res. 2004;10:3064–8. ArticleCASPubMed Google Scholar
Urano T, Takahashi S, Suzuki T, Fujimura T, Fujita M, Kumagai J, et al. 14-3-3sigma is down-regulated in human prostate cancer. Biochem Biophys Res Commun. 2004;319:795–800. ArticleCASPubMed Google Scholar
Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell. 2016;164:487–98. ArticleCASPubMed CentralPubMed Google Scholar
Zhang P, Elabd S, Hammer S, Solozobova V, Yan H, Bartel F, et al. TRIM25 has a dual function in the p53/Mdm2 circuit. Oncogene. 2015;34:5729–38. ArticleCASPubMed Google Scholar
Liu C, Zhu Y, Lou W, Nadiminty N, Chen X, Zhou Q, et al Functional p53 determines docetaxel sensitivity in prostate cancer cells. Prostate. 2013;73:418–27. ArticleCASPubMed Google Scholar
Zhao KW, Sikriwal D, Dong X, Guo P, Sun X, Dong JT. Oestrogen causes degradation of KLF5 by inducing the E3 ubiquitin ligase EFP in ER-positive breast cancer cells. Biochem J. 2011;437:323–33. ArticleCASPubMed Google Scholar
Lee NR, Kim HI, Choi MS, Yi CM, Inn KS. Regulation of MDA5-MAVS antiviral signaling axis by TRIM25 through TRAF6-mediated NF-κB activation. Mol Cells. 2015;38:759–64. ArticleCASPubMed CentralPubMed Google Scholar
Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, et al TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature. 2007;446:916–20. ArticleCASPubMed Google Scholar
Nakasato N, Ikeda K, Urano T, Horie-Inoue K, Takeda S, Inoue S. A ubiquitin E3 ligase Efp is up-regulated by interferons and conjugated with ISG15. Biochem Biophys Res Commun. 2006;351:540–6. ArticleCASPubMed Google Scholar
Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, Asangani IA, et al Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell. 2011;19:664–78. ArticleCASPubMed CentralPubMed Google Scholar
Kim MM, Wiederschain D, Kennedy D, Hansen E, Yuan ZM. Modulation of p53 and MDM2 activity by novel interaction with Ras-GAP binding proteins (G3BP). Oncogene. 2007;26:4209–15. ArticleCASPubMed Google Scholar
Agell L, Hernández S, de Muga S, Lorente JA, Juanpere N, Esgueva R, et al. KLF6 and TP53 mutations are a rare event in prostate cancer: distinguishing between Taq polymerase artifacts and true mutations. Mod Pathol. 2008;21:1470–8. ArticleCASPubMed Google Scholar
Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22. ArticleCASPubMed CentralPubMed Google Scholar
Yue X, Zhao Y, Xu Y, Zheng M, Feng Z, Hu W. Mutant p53 in cancer: accumulation, gain-of-function, and therapy. J Mol Biol. 2017;429:1595–606. ArticleCASPubMed CentralPubMed Google Scholar
Valentino E, Bellazzo A, Di Minin G, Sicari D, Apollonio M, Scognamiglio G, et al. Mutant p53 potentiates the oncogenic effects of insulin by inhibiting the tumor suppressor DAB2IP. Proc Natl Acad Sci USA. 2017;114:7623–8. ArticleCASPubMedPubMed Central Google Scholar
Takayama K, Horie-Inoue K, Katayama S, Suzuki T, Tsutsumi S, Ikeda K, et al Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. EMBO J. 2013;32:1665–80. ArticleCASPubMed CentralPubMed Google Scholar
Takayama K, Suzuki T, Fujimura T, Urano T, Takahashi S, Homma Y, et al CtBP2 modulates the androgen receptor to promote prostate cancer progression. Cancer Res. 2014;74:6542–53. ArticleCASPubMed Google Scholar
Takayama K, Misawa A, Suzuki T, Takagi K, Hayashizaki Y, Fujimura T, et al TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression. Nat Commun. 2015;6:8219. ArticleCASPubMed Google Scholar
Takayama K, Tsutsumi S, Katayama S, Okayama T, Horie-Inoue K, Ikeda K, et al. Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells. Oncogene. 2011;30:619–30. ArticleCASPubMed Google Scholar
Ueyama K, Ikeda K, Sato W, Nakasato N, Horie-Inoue K, Takeda S, et al Knockdown of Efp by DNA-modified small interfering RNA inhibits breast cancer cell proliferation and in vivo tumor growth. Cancer Gene Ther. 2010;17:624–32. ArticleCASPubMed Google Scholar