Are Saturn’s rings actually young? (original) (raw)

References

  1. Lainey, V., Charnoz, S., Reboussin, L., Noyelles, B. & Baillié, K. The Cassini Division and Mimas’ eccentricity: A common history. In 44th Meet. Am. Astron. Soc. Div. Planet. Sci. 414.08 (2012).
  2. Baillié, K., Noyelles, B., Lainey, V., Charnoz, S. & Tobie, G. Formation of the Cassini Division – I. Shaping the rings by Mimas inward migration. Mon. Not. R. Astron. Soc. 486, 2933–2946 (2019).
    Article ADS Google Scholar
  3. Zhang, Z. et al. Exposure age of Saturn’s A and B rings, and the Cassini Division as suggested by their non-icy material content. Icarus 294, 14–42 (2017).
    Article ADS Google Scholar
  4. Ida, S. The origin of Saturn’s rings and moons. Science 364, 1028–1030 (2019).
    Article ADS Google Scholar
  5. Iess, L. et al. Measurement and implications of Saturn’s gravity field and ring mass. Science 364, eaat2965 (2019).
    Article ADS Google Scholar
  6. Daisaka, H., Tanaka, H. & Ida, S. Viscosity in a dense planetary ring with self-gravitating particles. Icarus 154, 296–312 (2001).
    Article ADS Google Scholar
  7. Charnoz, S., Salmon, J. & Crida, A. The recent formation of Saturn’s moonlets from viscous spreading of the main rings. Nature 465, 752–754 (2010).
    Article ADS Google Scholar
  8. Crida, A. & Charnoz, S. Satellite formation: Spreading of rings beyond the Roche radius. In SF2A-2013: Proc. Ann. Meet. French Soc. Astron. Astrophys. 57–60 (2013).
  9. Charnoz, S. et al. Accretion of Saturn’s mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons. Icarus 216, 535–550 (2011).
    Article ADS Google Scholar
  10. Crida, A. & Charnoz, S. Formation of regular satellites from ancient massive rings in the Solar System. Science 338, 1196–1199 (2012).
    Article ADS Google Scholar
  11. Nicholson, P. D. & Hedman, M. M. Self-gravity wake parameters in Saturn’s A and B rings. Icarus 206, 410–423 (2010).
    Article ADS Google Scholar
  12. Crida, A. & Charnoz, S. Complex satellite systems: A general model of formation from rings. Proc. Int. Astron. Union 9, 182–189 (2014).
    Article Google Scholar
  13. Salmon, J., Charnoz, S., Crida, A. & Brahic, A. Long-term and large-scale viscous evolution of dense planetary rings. Icarus 209, 771–785 (2010).
    Article ADS Google Scholar
  14. Canup, R. M. Origin of Saturn’s rings and inner moons by mass removal from a lost Titan-sized satellite. Nature 468, 943–946 (2010).
    Article ADS Google Scholar
  15. Kempf, S., Altobelli, N., Srama, R., Cuzzi, J. & Estrada, P. The age of Saturn’s rings constrained by the meteoroid flux into the system. In Am. Geophys. Union Fall Meet. 2017 abstr. P34A-05 (2017).
  16. Cuzzi, J. N. & Estrada, P. R. Compositional evolution of Saturn’s rings due to meteoroid bombardment. Icarus 132, 1–35 (1998).
    Article ADS Google Scholar
  17. Zhang, Z. et al. Cassini microwave observations provide clues to the origin of Saturn’s C ring. Icarus 281, 297–321 (2017).
    Article ADS Google Scholar
  18. Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005).
    Article ADS Google Scholar
  19. Morbidelli, A., Levison, H. F., Tsiganis, K. & Gomes, R. Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005).
    Article ADS Google Scholar
  20. Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005).
    Article ADS Google Scholar
  21. Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Levison, H. F. Evidence for very early migration of the Solar System planets from the Patroclus-Menoetius binary Jupiter Trojan. Nat. Astron. 2, 878–882 (2018).
    Article ADS Google Scholar
  22. Clement, M. S., Kaib, N. A., Raymond, S. N., Chambers, J. E. & Walsh, K. J. The early instability scenario: Terrestrial planet formation during the giant planet instability, and the effect of collisional fragmentation. Icarus 321, 778–790 (2019).
    Article ADS Google Scholar
  23. Ćuk, M., Dones, L. & Nesvorný, D. Dynamical evidence for a late formation of Saturn’s moons. Astrophys. J. 820, 97 (2016).
    Article ADS Google Scholar
  24. Hyodo, R. & Charnoz, C. Dynamical evolution of the debris disk after a satellite catastrophic disruption around Saturn. Astron. J. 154, 34 (2017).
    Article ADS Google Scholar
  25. Neveu, M. & Rhoden, A. R. Evolution of Saturn’s mid-sized moons. Nat. Astron. 3, 543–552 (2019).
    Article ADS Google Scholar
  26. Kirchoff, M. R. et al. In Enceladus and the Icy Moons of Saturn (eds Schenk, P. M. et al.) 267–284 (University of Arizona Press, 2018).
  27. Dalle Ore, C. M., Cruikshank, D. P., Mastrapa, R. M. E., Lewis, E. & White, O. L. Impact craters: An ice study on Rhea. Icarus 261, 80–90 (2015).
    Article ADS Google Scholar
  28. López-Oquendo, A. J. et al. Constraints on crater formation ages on Dione from Cassini VIMS and ISS. In 50th Lunar Planet. Sci. Conf. 2435 (2019).
  29. Fuller, J., Luan, J. & Quataert, E. Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. Mon. Not. R. Astron. Soc. 458, 3867–3879 (2016).
    Article ADS Google Scholar
  30. Charnoz, S., Morbidelli, A., Dones, L. & Salmon, J. Did Saturn’s rings form during the Late Heavy Bombardment? Icarus 199, 413–428 (2009).
    Article ADS Google Scholar
  31. Dubinski, J. A recent origin for Saturn’s rings from the collisional disruption of an icy moon. Icarus 321, 291–306 (2019).
    Article ADS Google Scholar
  32. Lainey, V. et al. New constraints on Saturn’s interior from Cassini astrometric data. Icarus 281, 286–296 (2017).
    Article ADS Google Scholar
  33. Pan, M. & Schlichting, H. E. Self-consistent size and velocity distributions of collisional cascades. Astrophys. J. 747, 113 (2012).
    Article ADS Google Scholar
  34. Levison, H. F., Morbidelli, A., Vokrouhlický, D. & Bottke, W. F. On a scattered-disk origin for the 2003 EL61 collisional family — An example of the importance of collisions on the dynamics of small bodies. Astron. J. 136, 1079–1088 (2008).
    Article ADS Google Scholar
  35. Poppe, A. R. An improved model for interplanetary dust fluxes in the outer Solar System. Icarus 264, 369–386 (2016).
    Article ADS Google Scholar
  36. Altobelli, N., Kempf, S. & Srama, R. Dust in the Outer Solar System as measured by Cassini-CDA: KBOs, Centaurs and TNOs as parent bodies? In 2017 Eur. Planet. Sci. Congr. 11, EPSC2017–794 (2017).
  37. Hsu, H.-W. et al. In situ collection of dust grains falling from Saturn’s rings into its atmosphere. Science 362, eaat3185 (2018).
    Article ADS Google Scholar
  38. Waite, J. R. Jr. et al. Chemical interactions between Saturn’s atmosphere and its rings. Science 362, eaat2382 (2018).
    Article ADS Google Scholar
  39. Buratti, B. J. et al. Close Cassini flybys of Saturn’s ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus. Science 364, eaat2349 (2019).
    Article ADS Google Scholar
  40. Amos, J. Cassini hints at young age for Saturn’s rings. BBC News (30 August 2017); https://go.nature.com/2SZPk5A
  41. Drake, N. Ringless Saturn? The planet’s famous feature may be surprisingly young. National Geographic (9 April 2019); https://go.nature.com/2Ztd4Bq
  42. Choi, C. Q. Saturn’s rings may be younger than the dinosaurs. Space (17 January 2019); https://go.nature.com/2ytZPEZ
  43. O’Donoghue, J. et al. Observations of the chemical and thermal response of ‘ring rain’ on Saturn’s ionosphere. Icarus 322, 251–260 (2019).
    Article ADS Google Scholar

Download references