ISG15 in antiviral immunity and beyond (original) (raw)
Schneider, W. M., Chevillotte, M. D. & Rice, C. M. Interferon-stimulated genes: a complex web of host defenses. Annu. Rev. Immunol.32, 513–545 (2014). CASPubMedPubMed Central Google Scholar
Der, S. D., Zhou, A., Williams, B. R. & Silverman, R. H. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc. Natl Acad. Sci. USA95, 15623–15628 (1998). CASPubMed Google Scholar
Loeb, K. R. & Haas, A. L. The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J. Biol. Chem.267, 7806–7813 (1992). CASPubMed Google Scholar
Zhang, X. et al. Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation. Nature517, 89–93 (2015). This study identifies a second cohort of individuals lacking ISG15 who presented with evidence of interferon hypersensitivity. They demonstrated that human ISG15 non-covalently binds to USP18, preventing its ubiquitylation and subsequent degradation, and therefore functions as a key negative regulator of type I interferon signalling. CASPubMed Google Scholar
Bogunovic, D. et al. Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency. Science337, 1684–1688 (2012). This groundbreaking study reports the first ISG15-deficient individuals. The findings indicate that these patients developed disseminated mycobacterial disease after bacillus Calmette–Guérin (BCG) vaccination and reveal that cells derived from these patients produced reduced levels of IFNγ after stimulation with Mycobacteriumowing to the loss of extracellular ISG15 and its ability to function as a cytokine to stimulate IFNγ production. CASPubMedPubMed Central Google Scholar
Korant, B. D., Blomstrom, D. C., Jonak, G. J. & Knight, E. Jr. Interferon-induced proteins. Purification and characterization of a 15,000-dalton protein from human and bovine cells induced by interferon. J. Biol. Chem.259, 14835–14839 (1984). CASPubMed Google Scholar
Haas, A. L., Ahrens, P., Bright, P. M. & Ankel, H. Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J. Biol. Chem.262, 11315–11323 (1987). CASPubMed Google Scholar
Blomstrom, D. C., Fahey, D., Kutny, R., Korant, B. D. & Knight, E. Jr. Molecular characterization of the interferon-induced 15-kDa protein. Molecular cloning and nucleotide and amino acid sequence. J. Biol. Chem.261, 8811–8816 (1986). CASPubMed Google Scholar
Dao, C. T. & Zhang, D. E. ISG15: a ubiquitin-like enigma. Front. Biosci.10, 2701–2722 (2005). CASPubMed Google Scholar
Narasimhan, J. et al. Crystal structure of the interferon-induced ubiquitin-like protein ISG15. J. Biol. Chem.280, 27356–27365 (2005). CASPubMed Google Scholar
Yuan, W. & Krug, R. M. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J.20, 362–371 (2001). CASPubMedPubMed Central Google Scholar
Radoshevich, L. et al. ISG15 counteracts Listeria monocytogenes infection. eLife4, e06848 (2015). PubMed Central Google Scholar
Malakhova, O., Malakhov, M., Hetherington, C. & Zhang, D. E. Lipopolysaccharide activates the expression of ISG15-specific protease UBP43 via interferon regulatory factor 3. J. Biol. Chem.277, 14703–14711 (2002). CASPubMed Google Scholar
Pitha-Rowe, I., Hassel, B. A. & Dmitrovsky, E. Involvement of UBE1L in ISG15 conjugation during retinoid-induced differentiation of acute promyelocytic leukemia. J. Biol. Chem.279, 18178–18187 (2004). CASPubMed Google Scholar
Liu, M., Hummer, B. T., Li, X. & Hassel, B. A. Camptothecin induces the ubiquitin-like protein, ISG15, and enhances ISG15 conjugation in response to interferon. J. Interferon Cytokine Res.24, 647–654 (2004). CASPubMed Google Scholar
Potter, J. L., Narasimhan, J., Mende-Mueller, L. & Haas, A. L. Precursor processing of pro-ISG15/UCRP, an interferon-beta-induced ubiquitin-like protein. J. Biol. Chem.274, 25061–25068 (1999). CASPubMed Google Scholar
Zhang, D. & Zhang, D. E. Interferon-stimulated gene 15 and the protein ISGylation system. J. Interferon Cytokine Res.31, 119–130 (2011). CASPubMedPubMed Central Google Scholar
Giannakopoulos, N. V. et al. Proteomic identification of proteins conjugated to ISG15 in mouse and human cells. Biochem. Biophys. Res. Commun.336, 496–506 (2005). CASPubMed Google Scholar
Zhao, C., Denison, C., Huibregtse, J. M., Gygi, S. & Krug, R. M. Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc. Natl Acad. Sci. USA102, 10200–10205 (2005). CASPubMed Google Scholar
Liu, M., Li, X. L. & Hassel, B. A. Proteasomes modulate conjugation to the ubiquitin-like protein, ISG15. J. Biol. Chem.278, 1594–1602 (2003). CASPubMed Google Scholar
Desai, S. D. et al. Elevated expression of ISG15 in tumor cells interferes with the ubiquitin/26S proteasome pathway. Cancer Res.66, 921–928 (2006). CASPubMed Google Scholar
Fan, J. B. et al. Identification and characterization of a novel ISG15-ubiquitin mixed chain and its role in regulating protein homeostasis. Sci. Rep.5, 12704 (2015). CASPubMedPubMed Central Google Scholar
Jeon, Y. J. et al. ISG15 modification of filamin B negatively regulates the type I interferon-induced JNK signalling pathway. EMBO Rep.10, 374–380 (2009). CASPubMedPubMed Central Google Scholar
Malakhov, M. P., Malakhova, O. A., Kim, K. I., Ritchie, K. J. & Zhang, D. E. UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J. Biol. Chem.277, 9976–9981 (2002). CASPubMed Google Scholar
Basters, A. et al. Structural basis of the specificity of USP18 toward ISG15. Nat. Struct. Mol. Biol.24, 270–278 (2017). This structural-based study characterizes how USP18 specifically recognizes and deconjugates ISG15-conjugated proteins. CASPubMedPubMed Central Google Scholar
Malakhova, O. A. et al. UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. EMBO J.25, 2358–2367 (2006). This was the first paper to demonstrate that, in addition to functioning as a deISGylase, USP18 also binds to the type I interferon receptor and functions as a critical negative regulator of interferon signalling. CASPubMedPubMed Central Google Scholar
Knobeloch, K. P., Utermohlen, O., Kisser, A., Prinz, M. & Horak, I. Reexamination of the role of ubiquitin-like modifier ISG15 in the phenotype of UBP43-deficient mice. Mol. Cell. Biol.25, 11030–11034 (2005). CASPubMedPubMed Central Google Scholar
Knight, E. Jr & Cordova, B. IFN-induced 15-kDa protein is released from human lymphocytes and monocytes. J. Immunol.146, 2280–2284 (1991). CASPubMed Google Scholar
D’Cunha, J. et al. In vitro and in vivo secretion of human ISG15, an IFN-induced immunomodulatory cytokine. J. Immunol.157, 4100–4108 (1996). PubMed Google Scholar
Lai, C. et al. Mice lacking the ISG15 E1 enzyme UbE1L demonstrate increased susceptibility to both mouse-adapted and non-mouse-adapted influenza B virus infection. J. Virol.83, 1147–1151 (2009). CASPubMed Google Scholar
Werneke, S. W. et al. ISG15 is critical in the control of Chikungunya virus infection independent of UbE1L mediated conjugation. PLoS Pathog.7, e1002322 (2011). This is the first in vivo study to indicate that unconjugated ISG15 can protect the host from viral infection by functioning as a critical immunomodulatory molecule. CASPubMedPubMed Central Google Scholar
D’Cunha, J. et al. Immunoregulatory properties of ISG15, an interferon-induced cytokine. Proc. Natl Acad. Sci. USA93, 211–215 (1996). PubMed Google Scholar
Padovan, E. et al. Interferon stimulated gene 15 constitutively produced by melanoma cells induces e-cadherin expression on human dendritic cells. Cancer Res.62, 3453–3458 (2002). CASPubMed Google Scholar
Owhashi, M. et al. Identification of a ubiquitin family protein as a novel neutrophil chemotactic factor. Biochem. Biophys. Res. Commun.309, 533–539 (2003). CASPubMed Google Scholar
Sun, L. et al. Exosomes contribute to the transmission of anti-HIV activity from TLR3-activated brain microvascular endothelial cells to macrophages. Antiviral Res.134, 167–171 (2016). CASPubMedPubMed Central Google Scholar
Dos Santos, P. F. & Mansur, D. S. Beyond ISGlylation: functions of free intracellular and extracellular ISG15. J. Interferon Cytokine Res.37, 246–253 (2017). PubMed Google Scholar
Swaim, C. D., Scott, A. F., Canadeo, L. A. & Huibregtse, J. M. Extracellular ISG15 signals cytokine secretion through the LFA-1 integrin receptor. Mol. Cell68, 581–590.e5 (2017). This paper identifies the first cell surface receptor for ISG15 and demonstrates its ability to augment IFNγ secretion from cells that were primed with IL-12. CASPubMedPubMed Central Google Scholar
Narasimhan, J., Potter, J. L. & Haas, A. L. Conjugation of the 15-kDa interferon-induced ubiquitin homolog is distinct from that of ubiquitin. J. Biol. Chem.271, 324–330 (1996). CASPubMed Google Scholar
Okumura, A., Pitha, P. M. & Harty, R. N. ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. Proc. Natl Acad. Sci. USA105, 3974–3979 (2008). This mechanistic study shows that ISG15 inhibits viral budding by targeting the E3 ligase activity of NEDD4. CASPubMed Google Scholar
Nakashima, H., Nguyen, T., Goins, W. F. & Chiocca, E. A. Interferon-stimulated gene 15 (ISG15) and ISG15-linked proteins can associate with members of the selective autophagic process, histone deacetylase 6 (HDAC6) and SQSTM1/p62. J. Biol. Chem.290, 1485–1495 (2015). PubMed Google Scholar
Du, Y. et al. LRRC25 inhibits type I IFN signaling by targeting ISG15-associated RIG-I for autophagic degradation. EMBO J.37, 351–366 (2018). CASPubMed Google Scholar
Lenschow, D. J. et al. Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J. Virol.79, 13974–13983 (2005). CASPubMedPubMed Central Google Scholar
Sampson, D. L. et al. A four-biomarker blood signature discriminates systemic inflammation due to viral infection versus other etiologies. Sci. Rep.7, 2914 (2017). CASPubMedPubMed Central Google Scholar
Hermann, M. & Bogunovic, D. ISG15: in sickness and in health. Trends Immunol.38, 79–93 (2017). CASPubMed Google Scholar
Giannakopoulos, N. V. et al. ISG15 Arg151 and the ISG15-conjugating enzyme UbE1L are important for innate immune control of Sindbis virus. J. Virol.83, 1602–1610 (2009). CASPubMed Google Scholar
Lenschow, D. J. et al. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc. Natl Acad. Sci. USA104, 1371–1376 (2007). This is the first in vivo study of ISG15-deficient mice, which demonstrates that ISG15 protected mice from viral-induced lethality and that it is critical in the host response to viral infection. CASPubMed Google Scholar
Rahnefeld, A. et al. Ubiquitin-like protein ISG15 (interferon-stimulated gene of 15 kDa) in host defense against heart failure in a mouse model of virus-induced cardiomyopathy. Circulation130, 1589–1600 (2014). This paper indicates that ISG15 conjugation has a critical role in controlling CVB3 viral replication and viral-induced cardiomyopathy. CASPubMed Google Scholar
Ketscher, L. et al. Selective inactivation of USP18 isopeptidase activity in vivo enhances ISG15 conjugation and viral resistance. Proc. Natl Acad. Sci. USA112, 1577–1582 (2015). The authors generateUsp18-knock-in mice in which USP18 is mutated so it cannot function as a deISGylase but still maintains its ability to negatively regulate interferon signalling. Analysis of these mice reveals that an increase in ISGylation could mediate viral resistance. CASPubMed Google Scholar
Morales, D. J. et al. Novel mode of ISG15-mediated protection against influenza A virus and Sendai virus in mice. J. Virol.89, 337–349 (2015). This paper describes the ability of ISG15 to protect the host from viral-induced lethality, independent of its effects on viral replication (a process defined as disease tolerance). PubMed Google Scholar
Xu, D. et al. Modification of BECN1 by ISG15 plays a crucial role in autophagy regulation by type I IFN/interferon. Autophagy11, 617–628 (2015). CASPubMedPubMed Central Google Scholar
Baldanta, S. et al. ISG15 governs mitochondrial function in macrophages following vaccinia virus infection. PLoS Pathog.13, e1006651 (2017). PubMedPubMed Central Google Scholar
Speer, S. D. et al. ISG15 deficiency and increased viral resistance in humans but not mice. Nat. Commun.7, 11496 (2016). This paper describes differences in viral resistance between human and mouse cells lacking ISG15 and demonstrates that this is due to the differential ability of human and mouse ISG15 to negatively regulate IFNα and IFNβ signalling. CASPubMedPubMed Central Google Scholar
Durfee, L. A., Lyon, N., Seo, K. & Huibregtse, J. M. The ISG15 conjugation system broadly targets newly synthesized proteins: implications for the antiviral function of ISG15. Mol. Cell38, 722–732 (2010). This study provides the first evidence that ISG15 conjugation targets newly synthesized proteins. It demonstrates that overexpression of most proteins, along with the ISG15 conjugation cascade, can lead to their modification. CASPubMedPubMed Central Google Scholar
Zhao, C., Hsiang, T. Y., Kuo, R. L. & Krug, R. M. ISG15 conjugation system targets the viral NS1 protein in influenza A virus-infected cells. Proc. Natl Acad. Sci. USA107, 2253–2258 (2010). CASPubMed Google Scholar
Tang, Y. et al. Herc5 attenuates influenza A virus by catalyzing ISGylation of viral NS1 protein. J. Immunol.184, 5777–5790 (2010). Together with reference 55, this is one of the first studies to describe that a viral protein (IAV NS1) can be ISGylated. CASPubMed Google Scholar
Wang, X. et al. Influenza A virus NS1 protein prevents activation of NF-kappaB and induction of alpha/beta interferon. J. Virol.74, 11566–11573 (2000). CASPubMedPubMed Central Google Scholar
Bergmann, M. et al. Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication. J. Virol.74, 6203–6206 (2000). CASPubMedPubMed Central Google Scholar
de la Luna, S., Fortes, P., Beloso, A. & Ortin, J. Influenza virus NS1 protein enhances the rate of translation initiation of viral mRNAs. J. Virol.69, 2427–2433 (1995). PubMedPubMed Central Google Scholar
Nemeroff, M. E., Barabino, S. M., Li, Y., Keller, W. & Krug, R. M. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3’end formation of cellular pre-mRNAs. Mol. Cell1, 991–1000 (1998). CASPubMed Google Scholar
Fortes, P., Beloso, A. & Ortin, J. Influenza virus NS1 protein inhibits pre-mRNA splicing and blocks mRNA nucleocytoplasmic transport. EMBO J.13, 704–712 (1994). CASPubMedPubMed Central Google Scholar
Zhao, C. et al. Influenza B virus non-structural protein 1 counteracts ISG15 antiviral activity by sequestering ISGylated viral proteins. Nat. Commun.7, 12754 (2016). This study finds that NS1/B binds to and sequesters ISGylated viral proteins, particularly ISGylated viral NPs, which prevents the incorporation of ISGylated NPs into NP oligomers, which was previously shown to inhibit viral RNA synthesis and viral replication. CASPubMedPubMed Central Google Scholar
Mathers, C., Schafer, X., Martinez-Sobrido, L. & Munger, J. The human cytomegalovirus UL26 protein antagonizes NF-kappaB activation. J. Virol.88, 14289–14300 (2014). PubMedPubMed Central Google Scholar
Kim, Y. J. et al. Consecutive inhibition of ISG15 expression and ISGylation by cytomegalovirus regulators. PLoS Pathog.12, e1005850 (2016). This paper identifies HCMV viral proteins that antagonize the ISG15 pathway to facilitate viral infection. PubMedPubMed Central Google Scholar
Okumura, A., Lu, G., Pitha-Rowe, I. & Pitha, P. M. Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc. Natl Acad. Sci. USA103, 1440–1445 (2006). CASPubMed Google Scholar
Sanyal, S. et al. Type I interferon imposes a TSG101/ISG15 checkpoint at the Golgi for glycoprotein trafficking during influenza virus infection. Cell Host Microbe14, 510–521 (2013). This mechanistic study finds that ISGylation of host protein in the secretory pathway impedes influenza virus release. CASPubMedPubMed Central Google Scholar
Villarroya-Beltri, C. et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat. Commun.7, 13588 (2016). CASPubMedPubMed Central Google Scholar
Yasuda, J., Nakao, M., Kawaoka, Y. & Shida, H. Nedd4 regulates egress of Ebola virus-like particles from host cells. J. Virol.77, 9987–9992 (2003). CASPubMedPubMed Central Google Scholar
Malakhova, O. A. & Zhang, D. E. ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response. J. Biol. Chem.283, 8783–8787 (2008). CASPubMedPubMed Central Google Scholar
Han, Z. et al. ITCH E3 ubiquitin ligase interacts with Ebola virus VP40 to regulate budding. J. Virol.90, 9163–9171 (2016). CASPubMedPubMed Central Google Scholar
Pincetic, A. & Leis, J. The mechanism of budding of retroviruses from cell membranes. Adv. Virol.2009, 6239691–6239699 (2009). PubMed Google Scholar
Pincetic, A., Kuang, Z., Seo, E. J. & Leis, J. The interferon-induced gene ISG15 blocks retrovirus release from cells late in the budding process. J. Virol.84, 4725–4736 (2010). CASPubMedPubMed Central Google Scholar
Kuang, Z., Seo, E. J. & Leis, J. Mechanism of inhibition of retrovirus release from cells by interferon-induced gene ISG15. J. Virol.85, 7153–7161 (2011). CASPubMedPubMed Central Google Scholar
Dai, L. et al. Transcriptomic analysis of KSHV-infected primary oral fibroblasts: the role of interferon-induced genes in the latency of oncogenic virus. Oncotarget7, 47052–47060 (2016). PubMedPubMed Central Google Scholar
Jacobs, S. R. et al. Kaposi’s sarcoma-associated herpesvirus viral interferon regulatory factor 1 interacts with a member of the interferon-stimulated gene 15 pathway. J. Virol.89, 11572–11583 (2015). The study demonstrates that ISG15 regulates reactivation of latent virus. CASPubMedPubMed Central Google Scholar
Werneke, S. W. A. Role for Interferon Stimulated Gene-15 (ISG15) During Chikungunya Virus Infection Thesis, Washington Univ. (2013).
Eduardo-Correia, B., Martinez-Romero, C., Garcia-Sastre, A. & Guerra, S. ISG15 is counteracted by vaccinia virus E3 protein and controls the proinflammatory response against viral infection. J. Virol.88, 2312–2318 (2014). PubMedPubMed Central Google Scholar
Soares, M. P., Teixeira, L. & Moita, L. F. Disease tolerance and immunity in host protection against infection. Nat. Rev. Immunol.17, 83–96 (2017). CASPubMed Google Scholar
Shi, H. X. et al. Positive regulation of interferon regulatory factor 3 activation by Herc5 via ISG15 modification. Mol. Cell. Biol.30, 2424–2436 (2010). CASPubMedPubMed Central Google Scholar
Katzenell, S. & Leib, D. A. Herpes simplex virus and interferon signaling induce novel autophagic clusters in sensory neurons. J. Virol.90, 4706–4719 (2016). CASPubMedPubMed Central Google Scholar
Falvey, C. M. et al. UBE2L6/UBCH8 and ISG15 attenuate autophagy in esophageal cancer cells. Oncotarget8, 23479–23491 (2017). PubMedPubMed Central Google Scholar
Malakhov, M. P. et al. High-throughput immunoblotting. Ubiquitiin-like protein ISG15 modifies key regulators of signal transduction. J. Biol. Chem.278, 16608–16613 (2003). CASPubMed Google Scholar
Okumura, F. et al. Activation of double-stranded RNA-activated protein kinase (PKR) by interferon-stimulated gene 15 (ISG15) modification down-regulates protein translation. J. Biol. Chem.288, 2839–2847 (2013). CASPubMed Google Scholar
Ganesan, M., Poluektova, L. Y., Tuma, D. J., Kharbanda, K. K. & Osna, N. A. Acetaldehyde disrupts interferon alpha signaling in hepatitis C virus-infected liver cells by up-regulating USP18. Alcohol Clin. Exp. Res.40, 2329–2338 (2016). CASPubMedPubMed Central Google Scholar
Jones, D. M., Domingues, P., Targett-Adams, P. & McLauchlan, J. Comparison of U2OS and Huh-7 cells for identifying host factors that affect hepatitis C virus RNA replication. J. Gen. Virol.91, 2238–2248 (2010). CASPubMed Google Scholar
Chen, L. et al. ISG15, a ubiquitin-like interferon-stimulated gene, promotes hepatitis C virus production in vitro: implications for chronic infection and response to treatment. J. Gen. Virol.91, 382–388 (2010). CASPubMed Google Scholar
Broering, R. et al. The interferon stimulated gene 15 functions as a proviral factor for the hepatitis C virus and as a regulator of the IFN response. Gut59, 1111–1119 (2010). CASPubMed Google Scholar
Chua, P. K. et al. Modulation of alpha interferon anti-hepatitis C virus activity by ISG15. J. Gen. Virol.90, 2929–2939 (2009). CASPubMed Google Scholar
Sung, P. S. et al. Roles of unphosphorylated ISGF3 in HCV infection and interferon responsiveness. Proc. Natl Acad. Sci. USA112, 10443–10448 (2015). This study shows that ISG15 sustains USP18-mediated interferon signalling, which impedes the effectiveness of an HCV therapy. CASPubMed Google Scholar
Sridharan, H., Zhao, C. & Krug, R. M. Species specificity of the NS1 protein of influenza B virus: NS1 binds only human and non-human primate ubiquitin-like ISG15 proteins. J. Biol. Chem.285, 7852–7856 (2010). CASPubMedPubMed Central Google Scholar
Versteeg, G. A. et al. Species-specific antagonism of host ISGylation by the influenza B virus NS1 protein. J. Virol.84, 5423–5430 (2010). CASPubMedPubMed Central Google Scholar
Guerra, S., Caceres, A., Knobeloch, K. P., Horak, I. & Esteban, M. Vaccinia virus E3 protein prevents the antiviral action of ISG15. PLoS Pathog.4, e1000096 (2008). The study shows that vaccinia virus E3L protein functions as an immune-evasion protein by inhibiting ISG15 conjugate formation and is critical to viral pathogenesis. PubMedPubMed Central Google Scholar
Frias-Staheli, N. et al. Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe2, 404–416 (2007). The study is the first to identify that viral OTU domain-containing proteins can function as both deubiquitinases and deISGylases. CASPubMedPubMed Central Google Scholar
Lindner, H. A. et al. The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J. Virol.79, 15199–15208 (2005). CASPubMedPubMed Central Google Scholar
Clementz, M. A. et al. Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. J. Virol.84, 4619–4629 (2010). CASPubMedPubMed Central Google Scholar
Mielech, A. M., Kilianski, A., Baez-Santos, Y. M., Mesecar, A. D. & Baker, S. C. MERS-CoV papain-like protease has deISGylating and deubiquitinating activities. Virology450–451, 64–70 (2014). The study demonstrates that SARS and MERS PLpro also function as deubiquitinating and deISGylating enzymes. PubMed Google Scholar
Chen, Z. et al. Proteolytic processing and deubiquitinating activity of papain-like proteases of human coronavirus NL63. J. Virol.81, 6007–6018 (2007). CASPubMedPubMed Central Google Scholar
Ma, X. Z. et al. Protein interferon-stimulated gene 15 conjugation delays but does not overcome coronavirus proliferation in a model of fulminant hepatitis. J. Virol.88, 6195–6204 (2014). CASPubMedPubMed Central Google Scholar
Deng, X. et al. A chimeric virus-mouse model system for evaluating the function and inhibition of papain-like proteases of emerging coronaviruses. J. Virol.88, 11825–11833 (2014). This study shows that the deISGylase activity of a SARS PLpro has a critical role during infection by targeting the ISG15 pathway. PubMedPubMed Central Google Scholar
Deaton, M. K. et al. Biochemical and structural insights into the preference of nairoviral DeISGylases for interferon-stimulated gene product 15 originating from certain species. J. Virol.90, 8314–8327 (2016). CASPubMedPubMed Central Google Scholar
Bekes, M. et al. Recognition of Lys48-linked di-ubiquitin and deubiquitinating activities of the SARS coronavirus papain-like protease. Mol. Cell62, 572–585 (2016). CASPubMedPubMed Central Google Scholar
Altun, M. et al. The human otubain2-ubiquitin structure provides insights into the cleavage specificity of poly-ubiquitin-linkages. PLoS ONE10, e0115344 (2015). PubMedPubMed Central Google Scholar
Bekes, M. et al. SARS hCoV papain-like protease is a unique Lys48 linkage-specific di-distributive deubiquitinating enzyme. Biochem. J.468, 215–226 (2015). CASPubMedPubMed Central Google Scholar
Deaton, M. K., Spear, A., Faaberg, K. S. & Pegan, S. D. The vOTU domain of highly-pathogenic porcine reproductive and respiratory syndrome virus displays a differential substrate preference. Virology454–455, 247–253 (2014). PubMed Google Scholar
Baez-Santos, Y. M., Mielech, A. M., Deng, X., Baker, S. & Mesecar, A. D. Catalytic function and substrate specificity of the papain-like protease domain of nsp3 from the Middle East respiratory syndrome coronavirus. J. Virol.88, 12511–12527 (2014). PubMedPubMed Central Google Scholar
Ratia, K., Kilianski, A., Baez-Santos, Y. M., Baker, S. C. & Mesecar, A. Structural basis for the ubiquitin-linkage specificity and deISGylating activity of SARS-CoV papain-like protease. PLoS Pathog.10, e1004113 (2014). PubMedPubMed Central Google Scholar
Daczkowski, C. M. et al. Structural insights into the interaction of coronavirus papain-like proteases and interferon-stimulated gene product 15 from different species. J. Mol. Biol.429, 1661–1683 (2017). CASPubMedPubMed Central Google Scholar
Bianco, C. & Mohr, I. Restriction of human cytomegalovirus replication by ISG15, a host effector regulated by cGAS-STING double-stranded-DNA sensing. J. Virol.91, e02483–16 (2017). CASPubMedPubMed Central Google Scholar
Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell44, 325–340 (2011). CASPubMedPubMed Central Google Scholar
Gane, E. J. et al. The oral toll-like receptor-7 agonist GS-9620 in patients with chronic hepatitis B virus infection. J. Hepatol.63, 320–328 (2015). CASPubMed Google Scholar
Janssen, H. L. A. et al. Safety, efficacy and pharmacodynamics of vesatolimod (GS-9620) in virally-suppressed patients with chronic hepatitis B. J. Hepatol.68, 431–440 (2018). CASPubMed Google Scholar
Villarreal, D. O. et al. Ubiquitin-like molecule ISG15 acts as an immune adjuvant to enhance antigen-specific CD8 T cell tumor immunity. Mol. Ther.23, 1653–1662 (2015). CASPubMedPubMed Central Google Scholar
Malakhova, O. A. et al. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev.17, 455–460 (2003). CASPubMedPubMed Central Google Scholar
Tokarz, S. et al. The ISG15 isopeptidase UBP43 is regulated by proteolysis via the SCFSkp2 ubiquitin ligase. J. Biol. Chem.279, 46424–46430 (2004). CASPubMed Google Scholar
Meuwissen, M. E. et al. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J. Exp. Med.213, 1163–1174 (2016). PubMedPubMed Central Google Scholar
Dauphinee, S. M. et al. Contribution of increased ISG15, ISGylation and deregulated type I IFN signaling in Usp18 mutant mice during the course of bacterial infections. Genes Immun.15, 282–292 (2014). CASPubMedPubMed Central Google Scholar
Manca, C. et al. Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway. J. Interferon Cytokine Res.25, 694–701 (2005). CASPubMed Google Scholar
Ordway, D. et al. The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent TH1 response followed by rapid down-regulation. J. Immunol.179, 522–531 (2007). CASPubMed Google Scholar
Stanley, S. A., Johndrow, J. E., Manzanillo, P. & Cox, J. S. The Type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J. Immunol.178, 3143–3152 (2007). CASPubMed Google Scholar
Antonelli, L. R. et al. Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J. Clin. Invest.120, 1674–1682 (2010). CASPubMedPubMed Central Google Scholar
Desvignes, L., Wolf, A. J. & Ernst, J. D. Dynamic roles of type I and type II IFNs in early infection with Mycobacterium tuberculosis. J. Immunol.188, 6205–6215 (2012). CASPubMedPubMed Central Google Scholar
Dorhoi, A. et al. Type I IFN signaling triggers immunopathology in tuberculosis-susceptible mice by modulating lung phagocyte dynamics. Eur. J. Immunol.44, 2380–2393 (2014). CASPubMedPubMed Central Google Scholar
Kimmey, J. M. et al. The impact of ISGylation during Mycobacterium tuberculosis infection in mice. Microbes Infect.19, 249–258 (2017). CASPubMedPubMed Central Google Scholar
Manca, C. et al. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha /beta. Proc. Natl Acad. Sci. USA98, 5752–5757 (2001). CASPubMed Google Scholar
Berry, M. P. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature466, 973–977 (2010). CASPubMedPubMed Central Google Scholar
Dong, C., Gao, N., Ross, B. X. & Yu, F. X. ISG15 in host defense against Candida albicans infection in a mouse model of fungal keratitis. Invest. Ophthalmol. Vis. Sci.58, 2948–2958 (2017). CASPubMedPubMed Central Google Scholar
Cheon, H. et al. IFNbeta-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J.32, 2751–2763 (2013). CASPubMedPubMed Central Google Scholar
Cheon, H. & Stark, G. R. Unphosphorylated STAT1 prolongs the expression of interferon-induced immune regulatory genes. Proc. Natl Acad. Sci. USA106, 9373–9378 (2009). CASPubMed Google Scholar
Kim, K. I. et al. Enhanced antibacterial potential in UBP43-deficient mice against Salmonella typhimurium infection by up-regulating type I IFN signaling. J. Immunol.175, 847–854 (2005). CASPubMed Google Scholar
Dao, C. T., Luo, J. K. & Zhang, D. E. Retinoic acid-induced protein ISGylation is dependent on interferon signal transduction. Blood Cells Mol. Dis.36, 406–413 (2006). CASPubMed Google Scholar
Memet, S., Besancon, F., Bourgeade, M. F. & Thang, M. N. Direct induction of interferon-gamma- and interferon-alpha/beta-inducible genes by double-stranded RNA. J. Interferon Res.11, 131–141 (1991). CASPubMed Google Scholar
Daly, C. & Reich, N. C. Characterization of specific DNA-binding factors activated by double-stranded RNA as positive regulators of interferon alpha/beta-stimulated genes. J. Biol. Chem.270, 23739–23746 (1995). CASPubMed Google Scholar
Weaver, B. K., Kumar, K. P. & Reich, N. C. Interferon regulatory factor 3 and CREB-binding protein/p300 are subunits of double-stranded RNA-activated transcription factor DRAF1. Mol. Cell. Biol.18, 1359–1368 (1998). CASPubMedPubMed Central Google Scholar
Park, J. H. et al. Positive feedback regulation of p53 transactivity by DNA damage-induced ISG15 modification. Nat. Commun.7, 12513 (2016). CASPubMedPubMed Central Google Scholar
Chiu, Y. H., Sun, Q. & Chen, Z. J. E1-L2 activates both ubiquitin and FAT10. Mol. Cell27, 1014–1023 (2007). CASPubMed Google Scholar
Kim, K. I. et al. Ube1L and protein ISGylation are not essential for alpha/beta interferon signaling. Mol. Cell. Biol.26, 472–479 (2006). CASPubMedPubMed Central Google Scholar
Krug, R. M., Zhao, C. & Beaudenon, S. Properties of the ISG15 E1 enzyme UbE1L. Methods Enzymol.398, 32–40 (2005). CASPubMed Google Scholar
Zhao, C. et al. The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-alpha/beta-induced ubiquitin-like protein. Proc. Natl Acad. Sci. USA101, 7578–7582 (2004). CASPubMed Google Scholar
Kim, K. I., Giannakopoulos, N. V., Virgin, H. W. & Zhang, D. E. Interferon-inducible ubiquitin E2, Ubc8, is a conjugating enzyme for protein ISGylation. Mol. Cell. Biol.24, 9592–9600 (2004). CASPubMedPubMed Central Google Scholar
Zou, W. & Zhang, D. E. The interferon-inducible ubiquitin-protein isopeptide ligase (E3) EFP also functions as an ISG15 E3 ligase. J. Biol. Chem.281, 3989–3994 (2006). CASPubMed Google Scholar
Okumura, F., Zou, W. & Zhang, D. E. ISG15 modification of the eIF4E cognate 4EHP enhances cap structure-binding activity of 4EHP. Genes Dev.21, 255–260 (2007). CASPubMedPubMed Central Google Scholar
Dastur, A., Beaudenon, S., Kelley, M., Krug, R. M. & Huibregtse, J. M. Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J. Biol. Chem.281, 4334–4338 (2006). CASPubMed Google Scholar
Wong, J. J., Pung, Y. F., Sze, N. S. & Chin, K. C. HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proc. Natl Acad. Sci. USA103, 10735–10740 (2006). CASPubMed Google Scholar
Ketscher, L., Basters, A., Prinz, M. & Knobeloch, K. P. mHERC6 is the essential ISG15 E3 ligase in the murine system. Biochem. Biophys. Res. Commun.417, 135–140 (2012). CASPubMed Google Scholar
Oudshoorn, D. et al. HERC6 is the main E3 ligase for global ISG15 conjugation in mouse cells. PLoS ONE7, e29870 (2012). CASPubMedPubMed Central Google Scholar
Hare, N. J. et al. Microparticles released from _Mycobacterium tuberculosis_-infected human macrophages contain increased levels of the type I interferon inducible proteins including ISG15. Proteomics15, 3020–3029 (2015). CASPubMed Google Scholar
Recht, M., Borden, E. C. & Knight, E. Jr. A human 15-kDa IFN-induced protein induces the secretion of IFN-gamma. J. Immunol.147, 2617–2623 (1991). CASPubMed Google Scholar
Zaheer, R. S. et al. Human rhinovirus-induced ISG15 selectively modulates epithelial antiviral immunity. Mucosal Immunol.7, 1127–1138 (2014). CASPubMedPubMed Central Google Scholar
Arimoto, K. I. et al. STAT2 is an essential adaptor in USP18-mediated suppression of type I interferon signaling. Nat. Struct. Mol. Biol.24, 279–289 (2017). CASPubMedPubMed Central Google Scholar
Rodriguez, M. R., Monte, K., Thackray, L. B. & Lenschow, D. J. ISG15 functions as an interferon-mediated antiviral effector early in the murine norovirus life cycle. J. Virol.88, 9277–9286 (2014). PubMedPubMed Central Google Scholar
Dai, J., Pan, W. & Wang, P. ISG15 facilitates cellular antiviral response to dengue and west nile virus infection in vitro. Virol. J.8, 468 (2011). CASPubMedPubMed Central Google Scholar
Kim, M. J. & Yoo, J. Y. Inhibition of hepatitis C virus replication by IFN-mediated ISGylation of HCV-NS5A. J. Immunol.185, 4311–4318 (2010). CASPubMed Google Scholar
Tian, J. et al. Blocking the PI3K/AKT pathway enhances mammalian reovirus replication by repressing IFN-stimulated genes. Front. Microbiol.6, 886 (2015). PubMedPubMed Central Google Scholar
Gonzalez-Sanz, R. et al. ISG15 is upregulated in respiratory syncytial virus infection and reduces virus growth through protein ISGylation. J. Virol.90, 3428–3438 (2016). CASPubMedPubMed Central Google Scholar
Singh, P. K. et al. Zika virus infects cells lining the blood-retinal barrier and causes chorioretinal atrophy in mouse eyes. JCI Insight2, e92340 (2017). PubMedPubMed Central Google Scholar
Hishiki, T. et al. Interferon-mediated ISG15 conjugation restricts dengue virus 2 replication. Biochem. Biophys. Res. Commun.448, 95–100 (2014). CASPubMed Google Scholar
Li, Y. et al. Interferon-stimulated gene 15 conjugation stimulates hepatitis B virus production independent of type I interferon signaling pathway in vitro. Mediators Inflamm.2016, 7417648 (2016). PubMedPubMed Central Google Scholar
Chavoshi, S. et al. Identification of Kaposi sarcoma herpesvirus (KSHV) vIRF1 protein as a novel interaction partner of human deubiquitinase USP7. J. Biol. Chem.291, 6281–6291 (2016). CASPubMedPubMed Central Google Scholar
Bianco, C. & Mohr, I. Restriction of HCMV replication by ISG15, a host effector regulated by cGAS-STING dsDNA sensing. J. Virol.91, e02483–16 (2017). CASPubMedPubMed Central Google Scholar
Foy, E. et al. Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proc. Natl Acad. Sci. USA102, 2986–2991 (2005). CASPubMed Google Scholar
Sumpter, R. Jr. et al. Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase. RIG-I. J. Virol.79, 2689–2699 (2005). CASPubMedPubMed Central Google Scholar
Kim, M. J., Hwang, S. Y., Imaizumi, T. & Yoo, J. Y. Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. J. Virol.82, 1474–1483 (2008). CASPubMed Google Scholar
Huang, Y. F., Wee, S., Gunaratne, J., Lane, D. P. & Bulavin, D. V. Isg15 controls p53 stability and functions. Cell Cycle13, 2200–2210 (2014). PubMed Google Scholar
Park, J. M. et al. Modification of PCNA by ISG15 plays a crucial role in termination of error-prone translesion DNA synthesis. Mol. Cell54, 626–638 (2014). CASPubMed Google Scholar
Lee, J. H. et al. Glycoprotein 90K, downregulated in advanced colorectal cancer tissues, interacts with CD9/CD82 and suppresses the Wnt/beta-catenin signal via ISGylation of beta-catenin. Gut59, 907–917 (2010). CASPubMed Google Scholar
Yeh, Y. H., Yang, Y. C., Hsieh, M. Y., Yeh, Y. C. & Li, T. K. A negative feedback of the HIF-1alpha pathway via interferon-stimulated gene 15 and ISGylation. Clin. Cancer Res.19, 5927–5939 (2013). CASPubMed Google Scholar
Im, E., Yoo, L., Hyun, M., Shin, W. H. & Chung, K. C. Covalent ISG15 conjugation positively regulates the ubiquitin E3 ligase activity of parkin. Open Biol.6, 160193 (2016). PubMedPubMed Central Google Scholar
Cerikan, B. et al. Cell-intrinsic adaptation arising from chronic ablation of a key Rho GTPase regulator. Dev. Cell39, 28–43 (2016). CASPubMed Google Scholar
Takeuchi, T. & Yokosawa, H. ISG15 modification of Ubc13 suppresses its ubiquitin-conjugating activity. Biochem. Biophys. Res. Commun.336, 9–13 (2005). CASPubMed Google Scholar
Takeuchi, T., Iwahara, S., Saeki, Y., Sasajima, H. & Yokosawa, H. Link between the ubiquitin conjugation system and the ISG15 conjugation system: ISG15 conjugation to the UbcH6 ubiquitin E2 enzyme. J. Biochem.138, 711–719 (2005). CASPubMed Google Scholar
Takeuchi, T., Kobayashi, T., Tamura, S. & Yokosawa, H. Negative regulation of protein phosphatase 2Cbeta by ISG15 conjugation. FEBS Lett.580, 4521–4526 (2006). CASPubMed Google Scholar
Zou, W., Wang, J. & Zhang, D. E. Negative regulation of ISG15 E3 ligase EFP through its autoISGylation. Biochem. Biophys. Res. Commun.354, 321–327 (2007). CASPubMedPubMed Central Google Scholar
Feng, Q. et al. UBE1L causes lung cancer growth suppression by targeting cyclin D1. Mol. Cancer Ther.7, 3780–3788 (2008). CASPubMedPubMed Central Google Scholar
Shah, S. J. et al. UBE1L represses PML/RARα by targeting the PML domain for ISG15ylation. Mol. Cancer Ther.7, 905–914 (2008). CASPubMedPubMed Central Google Scholar
Jeon, Y. J. et al. Chemosensitivity is controlled by p63 modification with ubiquitin-like protein ISG15. J. Clin. Invest.122, 2622–2636 (2012). CASPubMedPubMed Central Google Scholar