- Kahn, F. Man in Structure & Function (A. A. Knopf, 1943).
- Crick, F. Central dogma of molecular biology. Nature 227, 561–563 (1970).
CAS PubMed Google Scholar
- Johnson, C. H., Ivanisevic, J. & Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17, 451–459 (2016).
CAS PubMed PubMed Central Google Scholar
- Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961).
CAS PubMed Google Scholar
- Yang, Q., Vijayakumar, A. & Kahn, B. B. Metabolites as regulators of insulin sensitivity and metabolism. Nat. Rev. Mol. Cell Biol. 19, 654–672 (2018).
CAS PubMed PubMed Central Google Scholar
- Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21–35 (2011).
CAS PubMed Google Scholar
- Katsyuba, E. & Auwerx, J. Modulating NAD+ metabolism, from bench to bedside. EMBO J. 36, 2670–2683 (2017).
CAS PubMed PubMed Central Google Scholar
- Magistretti, P. J. & Allaman, I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 19, 235–249 (2018).
CAS PubMed Google Scholar
- Liu, P.-S. et al. α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985–994 (2017).
CAS PubMed Google Scholar
- Knobloch, M. et al. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493, 226–230 (2013).
CAS PubMed Google Scholar
- Branco Dos Santos, F. et al. Probing the genome-scale metabolic landscape of Bordetella pertussis, the causative agent of whooping cough. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01528-17 (2017). This study identifies nitrogen sinks, using metabolomics based on a computational prediction, with the aim of enhancing vaccine production.
Article PubMed PubMed Central Google Scholar
- Giera, M., Branco Dos Santos, F. & Siuzdak, G. Metabolite-induced protein expression guided by metabolomics and systems biology. Cell Metab. 27, 270–272 (2018).
CAS PubMed Google Scholar
- Yang, M., Soga, T. & Pollard, P. J. Oncometabolites: linking altered metabolism with cancer. J. Clin. Invest. 123, 3652–3658 (2013).
CAS PubMed PubMed Central Google Scholar
- Guijas, C., Montenegro-Burke, J. R., Warth, B., Spilker, M. E. & Siuzdak, G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat. Biotechnol. 36, 316–320 (2018).
CAS PubMed PubMed Central Google Scholar
- Metallo, C. M. & Vander Heiden, M. G. Understanding metabolic regulation and its influence on cell physiology. Mol. Cell 49, 388–398 (2013).
CAS PubMed PubMed Central Google Scholar
- Rabinowitz, J. D. & Silhavy, T. J. Systems biology: metabolite turns master regulator. Nature 500, 283–284 (2013).
CAS PubMed PubMed Central Google Scholar
- Choudhary, C., Weinert, B. T., Nishida, Y., Verdin, E. & Mann, M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15, 536–550 (2014).
CAS PubMed Google Scholar
- Weinert, B. T. et al. Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome. Cell 174, 231–244 (2018).
CAS PubMed PubMed Central Google Scholar
- Rana, M. S. et al. Fatty acyl recognition and transfer by an integral membrane _S_-acyltransferase. Science 359, eaao6326 (2018).
PubMed PubMed Central Google Scholar
- James, A. M. et al. The causes and consequences of nonenzymatic protein acylation. Trends Biochem. Sci. 43, 921–932 (2018).
CAS PubMed Google Scholar
- Weinert, B. T., Moustafa, T., Iesmantavicius, V., Zechner, R. & Choudhary, C. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions. EMBO J. 34, 2620–2632 (2015).
CAS PubMed PubMed Central Google Scholar
- Dennis, J. W. & Brewer, C. F. Density-dependent lectin-glycan interactions as a paradigm for conditional regulation by posttranslational modifications. Mol. Cell. Proteomics 12, 913–920 (2013).
CAS PubMed PubMed Central Google Scholar
- Hart, G. W., Slawson, C., Ramirez-Correa, G. & Lagerlof, O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80, 825–858 (2011).
CAS PubMed PubMed Central Google Scholar
- Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018). This paper describes a new active metabolite, itaconate, that mediates inflammatory responses by protein modification.
CAS PubMed PubMed Central Google Scholar
- Bambouskova, M. et al. Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis. Nature 556, 556–504 (2018).
Google Scholar
- Cho-Park, P. F. & Steller, H. Proteasome regulation by ADP-ribosylation. Cell 153, 614–627 (2013).
CAS PubMed PubMed Central Google Scholar
- Tan, M. et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 19, 605–617 (2014).
CAS PubMed PubMed Central Google Scholar
- Masri, S. & Sassone-Corsi, P. The circadian clock: a framework linking metabolism, epigenetics and neuronal function. Nat. Rev. Neurosci. 14, 69–75 (2013).
CAS PubMed Google Scholar
- Warth, B. et al. Metabolomics reveals that dietary xenoestrogens alter cellular metabolism induced by palbociclib/letrozole combination cancer therapy. Cell Chem. Biol. 25, 291–300 (2018).
CAS PubMed PubMed Central Google Scholar
- Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).
PubMed Central Google Scholar
- Petkovich, D. A. et al. Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab. 25, 954–960 (2017).
CAS PubMed PubMed Central Google Scholar
- Schaefer, M. et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 24, 1590–1595 (2010).
CAS PubMed PubMed Central Google Scholar
- Helm, M. & Alfonzo, J. D. Posttranscriptional RNA modifications: playing metabolic games in a cell’s chemical Legoland. Chem. Biol. 21, 174–185 (2014).
CAS PubMed Google Scholar
- Hu, X.-L., Wang, Y. & Shen, Q. Epigenetic control on cell fate choice in neural stem cells. Protein Cell 3, 278–290 (2012).
CAS PubMed PubMed Central Google Scholar
- Watanabe, A., Yamada, Y. & Yamanaka, S. Epigenetic regulation in pluripotent stem cells: a key to breaking the epigenetic barrier. Phil. Trans. R. Soc B 368, 20120292 (2013).
PubMed PubMed Central Google Scholar
- Serganov, A. & Patel, D. J. Molecular recognition and function of riboswitches. Curr. Opin. Struct. Biol. 22, 279–286 (2012).
CAS PubMed PubMed Central Google Scholar
- Husted, A. S., Trauelsen, M., Rudenko, O., Hjorth, S. A. & Schwartz, T. W. GPCR-mediated signaling of metabolites. Cell Metab. 25, 777–796 (2017).
CAS PubMed Google Scholar
- Toma, I. et al. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J. Clin. Invest. 118, 2526–2534 (2008).
CAS PubMed PubMed Central Google Scholar
- Syed, I. et al. Palmitic acid hydroxystearic acids activate GPR40, which is involved in their beneficial effects on glucose homeostasis. Cell Metab. 27, 419–427 (2018). This study shows how active metabolites, such as a novel identified class of endogenous lipids (PAHSAs), can signal to cells via GPCRs.
CAS PubMed PubMed Central Google Scholar
- Yore, M. M. et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159, 318–332 (2014).
CAS PubMed PubMed Central Google Scholar
- Jones, C. P. & Ferré-D’Amaré, A. R. Long-range interactions in riboswitch control of gene expression. Annu. Rev. Biophys. 46, 455–481 (2017).
CAS PubMed PubMed Central Google Scholar
- Rajniak, J. et al. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nat. Chem. Biol. 14, 442–450 (2018).
CAS PubMed PubMed Central Google Scholar
- Steinbusch, L., Labouèbe, G. & Thorens, B. Brain glucose sensing in homeostatic and hedonic regulation. Trends Endocrinol. Metab. 26, 455–466 (2015).
CAS PubMed Google Scholar
- Beyer, B. A. et al. Metabolomics-based discovery of a metabolite that enhances oligodendrocyte maturation. Nat. Chem. Biol. 14, 22–28 (2018). This study demonstrates the metabolomics-based identification of taurine as an enhancer of oligodendrocyte differentiation from stem cells.
CAS PubMed Google Scholar
- Yang, M., Su, H., Soga, T., Kranc, K. R. & Pollard, P. J. Prolyl hydroxylase domain enzymes: important regulators of cancer metabolism. Hypoxia (Auckl.) 2, 127–142 (2014).
Google Scholar
- Xiao, M. et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26, 1326–1338 (2012).
CAS PubMed PubMed Central Google Scholar
- Adam, J. et al. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20, 524–537 (2011).
CAS PubMed PubMed Central Google Scholar
- Yang, M. et al. The succinated proteome of FH-mutant tumours. Metabolites 4, 640–654 (2014).
PubMed PubMed Central Google Scholar
- Zheng, L. et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat. Commun. 6, 6001 (2015).
CAS PubMed Google Scholar
- McBrayer, S. K. et al. Transaminase inhibition by 2-hydroxyglutarate impairs glutamate biosynthesis and redox homeostasis in glioma. Cell 175, 101–116 (2018).
CAS PubMed PubMed Central Google Scholar
- Wishart, D. S. Is cancer a genetic disease or a metabolic disease? EBioMedicine 2, 478–479 (2015).
PubMed PubMed Central Google Scholar
- Boroughs, L. K. & DeBerardinis, R. J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17, 351–359 (2015).
CAS PubMed PubMed Central Google Scholar
- Lee, C. K., Klopp, R. G., Weindruch, R. & Prolla, T. A. Gene expression profile of aging and its retardation by caloric restriction. Science 285, 1390–1393 (1999).
CAS PubMed Google Scholar
- Schvartzman, J. M., Thompson, C. B. & Finley, L. W. S. Metabolic regulation of chromatin modifications and gene expression. J. Cell Biol. 217, 2247–2259 (2018).
CAS PubMed PubMed Central Google Scholar
- Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).
CAS PubMed Google Scholar
- Piazza, I. et al. A map of protein-metabolite interactions reveals principles of chemical communication. Cell 172, 358–372 (2018). This paper presents a comprehensive study using structural proteomics and metabolomics to investigate the effects of small molecules on protein structure and complex assembly.
CAS PubMed Google Scholar
- Li, X., Gianoulis, T. A., Yip, K. Y., Gerstein, M. & Snyder, M. Extensive in vivo metabolite-protein interactions revealed by large-scale systematic analyses. Cell 143, 639–650 (2010).
CAS PubMed PubMed Central Google Scholar
- Alam, M. T. et al. The metabolic background is a global player in Saccharomyces gene expression epistasis. Nat. Microbiol. 1, 15030 (2016).
CAS PubMed PubMed Central Google Scholar
- Buescher, J. M. et al. A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34, 189–201 (2015).
CAS PubMed PubMed Central Google Scholar
- Jang, C., Chen, L. & Rabinowitz, J. D. Metabolomics and isotope tracing. Cell 173, 822–837 (2018). This review describes the state of the art of isotope tracing of metabolites.
CAS PubMed PubMed Central Google Scholar
- Domingo-Almenara, X., Montenegro-Burke, J. R., Benton, H. P. & Siuzdak, G. Annotation: a computational solution for streamlining metabolomics analysis. Anal. Chem. 90, 480–489 (2018).
CAS PubMed Google Scholar
- Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).
CAS PubMed Google Scholar
- Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395 (2010).
PubMed PubMed Central Google Scholar
- Pfeuffer, J. et al. OpenMS - a platform for reproducible analysis of mass spectrometry data. J. Biotechnol. 261, 142–148 (2017).
CAS PubMed Google Scholar
- Tsugawa, H. et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015).
CAS PubMed PubMed Central Google Scholar
- Vinaixa, M. et al. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. Trends Analyt. Chem. 78, 23–35 (2016).
CAS Google Scholar
- Wishart, D. S. et al. HMDB 4.0: The Human Metabolome Database for 2018. Nucleic Acids Res. 46, D608–D617 (2018).
CAS PubMed Google Scholar
- Wishart, D. S. et al. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res. 41, D801–D807 (2013).
CAS PubMed Google Scholar
- Guijas, C. et al. METLIN: a technology platform for identifying knowns and unknowns. Anal. Chem. 90, 3156–3164 (2018).
CAS PubMed PubMed Central Google Scholar
- Ludwig, C. et al. Birmingham Metabolite Library: a publicly accessible database of 1D 1H and 2D 1H J-resolved NMR spectra of authentic metabolite standards (BML-NMR). Metabolomics 8, 8–18 (2012).
CAS Google Scholar
- King, Z. A. et al. BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 44, D515–D522 (2016).
CAS PubMed Google Scholar
- Horai, H. et al. MassBank: a public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 45, 703–714 (2010).
CAS PubMed Google Scholar
- Fahy, E. et al. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50 (Suppl.), S9–S14 (2009).
PubMed PubMed Central Google Scholar
- Lai, Z. et al. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat. Methods 15, 53–56 (2018).
CAS PubMed Google Scholar
- Hummel, J., Selbig, J., Walther, D. & Kopka, J. in Metabolomics: A Powerful Tool in Systems Biology (eds Nielsen, J. & Jewett, M. C.) 75–95 (Springer Berlin Heidelberg, 2007).
- Vinaixa, M. et al. A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data. Metabolites 2, 775–795 (2012).
CAS PubMed PubMed Central Google Scholar
- Huan, T. et al. Systems biology guided by XCMS Online metabolomics. Nat. Methods 14, 461–462 (2017).
CAS PubMed PubMed Central Google Scholar
- Cottret, L. et al. MetExplore: collaborative edition and exploration of metabolic networks. Nucleic Acids Res. 46, W495–W502 (2018).
CAS PubMed PubMed Central Google Scholar
- Boekel, J. et al. Multi-omic data analysis using Galaxy. Nat. Biotechnol. 33, 137–139 (2015).
CAS PubMed Google Scholar
- Kuo, T.-C., Tian, T.-F. & Tseng, Y. J. 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data. BMC Syst. Biol. 7, 64 (2013).
PubMed PubMed Central Google Scholar
- Karnovsky, A. et al. Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics 28, 373–380 (2012).
CAS PubMed Google Scholar
- Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001).
CAS PubMed Google Scholar
- Roelofs, K. G., Wang, J., Sintim, H. O. & Lee, V. T. Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. Proc. Natl Acad. Sci. USA 108, 15528–15533 (2011).
CAS PubMed PubMed Central Google Scholar
- Savitski, M. M. et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346, 1255784 (2014).
PubMed Google Scholar
- Diether, M. & Sauer, U. Towards detecting regulatory protein-metabolite interactions. Curr. Opin. Microbiol. 39, 16–23 (2017).
CAS PubMed Google Scholar
- Tran, D. T., Adhikari, J. & Fitzgerald, M. C. StableIsotope labeling with amino acids in cell culture (SILAC)-based strategy for proteome-wide thermodynamic analysis of protein-ligand binding interactions. Mol. Cell. Proteomics 13, 1800–1813 (2014).
CAS PubMed PubMed Central Google Scholar
- Feng, Y. et al. Global analysis of protein structural changes in complex proteomes. Nat. Biotechnol. 32, 1036–1044 (2014).
CAS PubMed Google Scholar
- Gaulton, A. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, D1100–D1107 (2012).
CAS PubMed Google Scholar
- Kirchmair, J. et al. Predicting drug metabolism: experiment and/or computation? Nat. Rev. Drug Discov. 14, 387–404 (2015).
CAS PubMed Google Scholar
- Warth, B. et al. Exposome-scale investigations guided by global metabolomics, pathway analysis, and cognitive computing. Anal. Chem. 89, 11505–11513 (2017).
CAS PubMed Google Scholar
- Ge, H., Walhout, A. J. M. & Vidal, M. Integrating ‘omic’ information: a bridge between genomics and systems biology. Trends Genet. 19, 551–560 (2003).
CAS PubMed Google Scholar
- Hakimi, A. A. et al. An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell 29, 104–116 (2016).
CAS PubMed PubMed Central Google Scholar
- Davidson, R. L., Weber, R. J. M., Liu, H., Sharma-Oates, A. & Viant, M. R. Galaxy-M: a Galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass spectrometry-based metabolomics data. GigaScience 5, 10 (2016).
PubMed PubMed Central Google Scholar
- Villiers, F. et al. Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11, 1650–1663 (2011).
CAS PubMed Google Scholar
- Zhang, W., Li, F. & Nie, L. Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology 156, 287–301 (2010).
CAS PubMed Google Scholar
- Haas, R. et al. Designing and interpreting ‘multi-omic’ experiments that may change our understanding of biology. Curr. Opin. Syst. Biol. 6, 37–45 (2017).
Google Scholar
- Yugi, K., Kubota, H., Hatano, A. & Kuroda, S. Trans-omics: how to reconstruct biochemical networks across multiple ‘omic’ layers. Trends Biotechnol. 34, 276–290 (2016).
CAS PubMed Google Scholar
- Jewison, T. et al. SMPDB 2.0: big improvements to the small molecule pathway database. Nucleic Acids Res. 42, D478–D484 (2014).
CAS PubMed Google Scholar
- Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 42, D459–D471 (2014).
CAS PubMed Google Scholar
- Xia, J. & Wishart, D. S. MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 38, W71–W77 (2010).
CAS PubMed PubMed Central Google Scholar
- Fabregat, A. et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 46, D649–D655 (2018).
CAS PubMed Google Scholar
- Swainston, N. et al. Recon 2.2: from reconstruction to model of human metabolism. Metabolomics 12, 109 (2016).
PubMed PubMed Central Google Scholar
- Barupal, D. K. & Fiehn, O. Chemical similarity enrichment analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets. Sci. Rep. 7, 14567 (2017).
PubMed PubMed Central Google Scholar
- Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).
CAS PubMed Google Scholar
- Haug, K. et al. MetaboLights — an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 41, D781–D786 (2013).
CAS PubMed Google Scholar
- Sud, M. et al. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 44, D463–D470 (2016).
CAS PubMed Google Scholar
- Knepper, M. A. Proteomic pearl diving versus systems biology in cell physiology. Focus on “Proteomic mapping of proteins released during necrosis and apoptosis from cultured neonatal cardiac myocytes”. Am. J. Physiol. Cell Physiol. 306, C634–C635 (2014).
CAS PubMed PubMed Central Google Scholar
- Nielsen, J. & Keasling, J. D. Engineering cellular metabolism. Cell 164, 1185–1197 (2016).
CAS PubMed Google Scholar
- Chassagnole, C., Noisommit-Rizzi, N., Schmid, J. W., Mauch, K. & Reuss, M. Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol. Bioeng. 79, 53–73 (2002).
CAS PubMed Google Scholar
- Covert, M. W., Xiao, N., Chen, T. J. & Karr, J. R. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24, 2044–2050 (2008).
CAS PubMed PubMed Central Google Scholar
- Zelezniak, A. et al. Machine learning predicts the yeast metabolome from the quantitative proteome of kinase knockouts. Cell Syst. 7, 269–283 (2018). This study shows how the yeast metabolome can be predicted from omics data sets, showing the wide applicability of machine learning approaches in multi-omics integration.
CAS PubMed PubMed Central Google Scholar
- Kim, M., Rai, N., Zorraquino, V. & Tagkopoulos, I. Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli. Nat. Commun. 7, 13090 (2016). This study shows how cellular behaviour can be computationally predicted by mathematical modelling combined with omics integration.
CAS PubMed PubMed Central Google Scholar
- Frainay, C. et al. Mind the gap: mapping mass spectral databases in genome-scale metabolic networks reveals poorly covered areas. Metabolites 8, 51 (2018).
PubMed Central Google Scholar
- Chae, Y. K., Kim, S. H. & Markley, J. L. Relationship between recombinant protein expression and host metabolome as determined by two-dimensional NMR spectroscopy. PLOS ONE 12, e0177233 (2017).
PubMed PubMed Central Google Scholar
- Human Microbiome Project Consortium. A framework for human microbiome research. Nature 486, 215–221 (2012).
Google Scholar
- Corrêa-Oliveira, R., Fachi, J. L., Vieira, A., Sato, F. T. & Vinolo, M. A. R. Regulation of immune cell function by short-chain fatty acids. Clin. Transl Immunol. 5, e73 (2016).
Google Scholar
- Li, Z. et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 67, 1269–1279 (2017).
PubMed Google Scholar
- Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K. & Serhan, C. N. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol. 2, 612–619 (2001).
CAS PubMed Google Scholar
- Funk, C. D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875 (2001).
CAS PubMed Google Scholar
- Kalinski, P. Regulation of immune responses by prostaglandin E2. J. Immunol. 188, 21–28 (2012).
CAS PubMed Google Scholar
- Kaisar, M. M. M. et al. Dectin-1/2-induced autocrine PGE2 signaling licenses dendritic cells to prime Th2 responses. PLOS Biol. 16, e2005504 (2018). This study shows, starting from lipidomic data, the identification of prostaglandin E2 as a key modulator of T helper 2 immune cell responses.
PubMed PubMed Central Google Scholar
- Lipworth, B. J. Leukotriene-receptor antagonists. Lancet 353, 57–62 (1999).
CAS PubMed Google Scholar
- Veselinovic, M. et al. Clinical benefits of n-3 PUFA and γ-linolenic acid in patients with rheumatoid arthritis. Nutrients 9, 325 (2017).
PubMed Central Google Scholar
- Bhatt, D. L. et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 380, 11–22 (2019).
CAS PubMed Google Scholar
- Siscovick, D. S. et al. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease: a science advisory from the American Heart Association. Circulation 135, e867–e884 (2017).
CAS PubMed PubMed Central Google Scholar
- Kris-Etherton, P. M., Harris, W. S. & Appel, L. J., American Heart Association Nutrition Committee. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106, 2747–2757 (2002).
PubMed Google Scholar
- Hur, J. et al. Cerebrovascular β-amyloid deposition and associated microhemorrhages in a Tg2576 Alzheimer mouse model are reduced with a DHA-enriched diet. FASEB J. 32, 4972–4983 (2018).
CAS PubMed Google Scholar
- Grandison, R. C., Piper, M. D. W. & Partridge, L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462, 1061–1064 (2009).
CAS PubMed PubMed Central Google Scholar
- Denzel, M. S. et al. Hexosamine pathway metabolites enhance protein quality control and prolong life. Cell 156, 1167–1178 (2014).
CAS PubMed Google Scholar
- Serhan, C. N. Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J. 31, 1273–1288 (2017).
CAS PubMed PubMed Central Google Scholar
- Niihara, Y. et al. A phase 3 trial of l-glutamine in sickle cell disease. N. Engl. J. Med. 379, 226–235 (2018). This study shows that metabolic interventions with active metabolites can potentially have a large impact on human disease.
CAS PubMed Google Scholar
- Morris, C. R. et al. Erythrocyte glutamine depletion, altered redox environment, and pulmonary hypertension in sickle cell disease. Blood 111, 402–410 (2008).
CAS PubMed PubMed Central Google Scholar
- Doucette, C. D., Schwab, D. J., Wingreen, N. S. & Rabinowitz, J. D. α-Ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat. Chem. Biol. 7, 894–901 (2011).
CAS PubMed PubMed Central Google Scholar
- Chin, R. M. et al. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510, 397–401 (2014).
CAS PubMed PubMed Central Google Scholar
- Carey, B. W., Finley, L. W. S., Cross, J. R., Allis, C. D. & Thompson, C. B. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416 (2015).
CAS PubMed Google Scholar
- Klysz, D. et al. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal. 8, ra97 (2015).
PubMed Google Scholar
- Grimm, P. R. et al. Integrated compensatory network is activated in the absence of NCC phosphorylation. J. Clin. Invest. 125, 2136–2150 (2015).
PubMed PubMed Central Google Scholar
- Grimm, P. R. & Welling, P. A. α-Ketoglutarate drives electroneutral NaCl reabsorption in intercalated cells by activating a G-protein coupled receptor, Oxgr1. Curr. Opin. Nephrol. Hypertens. 26, 426–433 (2017).
CAS PubMed Google Scholar
- Coudray-Lucas, C., Le Bever, H., Cynober, L., De Bandt, J. P. & Carsin, H. Ornithine alpha-ketoglutarate improves wound healing in severe burn patients: a prospective randomized double-blind trial versus isonitrogenous controls. Crit. Care Med. 28, 1772–1776 (2000).
CAS PubMed Google Scholar
- Patti, G. J. et al. Meta-analysis of global metabolomic data identifies metabolites associated with life-span extension. Metabolomics 10, 737–743 (2014).
CAS PubMed Google Scholar
- Kamburov, A., Cavill, R., Ebbels, T. M. D., Herwig, R. & Keun, H. C. Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 27, 2917–2918 (2011).
CAS PubMed Google Scholar
- Peters, K. et al. PhenoMeNal: processing and analysis of metabolomics data in the cloud. Preprint at bioRxiv https://www.biorxiv.org/content/early/2018/09/13/409151 (2018).
- Cravatt, B. F. et al. Chemical characterization of a family of brain lipids that induce sleep. Science 268, 1506–1509 (1995).
CAS PubMed Google Scholar
- Boneschansker, L., Yan, J., Wong, E., Briscoe, D. M. & Irimia, D. Microfluidic platform for the quantitative analysis of leukocyte migration signatures. Nat. Commun. 5, 4787 (2014).
CAS PubMed Google Scholar
- Laan, L. C. et al. The whipworm (Trichuris suis) secretes prostaglandin E2 to suppress proinflammatory properties in human dendritic cells. FASEB J. 31, 719–731 (2016).
PubMed PubMed Central Google Scholar
- Shi, S.-Y. et al. Coupling HPLC to on-line, post-column (bio)chemical assays for high-resolution screening of bioactive compounds from complex mixtures. Trends Analyt. Chem. 28, 865–877 (2009).
CAS Google Scholar
- Tammela, P., Wennberg, T., Vuorela, H. & Vuorela, P. HPLC micro-fractionation coupled to a cell-based assay for automated on-line primary screening of calcium antagonistic components in plant extracts. Anal. Bioanal. Chem. 380, 614–618 (2004).
CAS PubMed Google Scholar
- Veyel, D. et al. PROMIS, global analysis of PROtein–metabolite interactions using size separation in Arabidopsis thaliana. J. Biol. Chem. 293, 12440–12453 (2018).
CAS PubMed PubMed Central Google Scholar
- Annis, D. A., Nickbarg, E., Yang, X., Ziebell, M. R. & Whitehurst, C. E. Affinity selection-mass spectrometry screening techniques for small molecule drug discovery. Curr. Opin. Chem. Biol. 11, 518–526 (2007).
CAS PubMed Google Scholar
- Huber, K. V. M. et al. Proteome-wide drug and metabolite interaction mapping by thermal-stability profiling. Nat. Methods 12, 1055–1057 (2015).
CAS PubMed PubMed Central Google Scholar
- Sergushichev, A. A. et al. GAM: a web-service for integrated transcriptional and metabolic network analysis. Nucleic Acids Res. 44, W194–W200 (2016).
CAS PubMed PubMed Central Google Scholar
- Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010).
CAS PubMed PubMed Central Google Scholar
- Harcombe, W. R. et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115 (2014).
CAS PubMed PubMed Central Google Scholar
- Li, S. et al. Predicting network activity from high throughput metabolomics. PLOS Comput. Biol. 9, e1003123 (2013).
CAS PubMed PubMed Central Google Scholar
- Pirhaji, L. et al. Revealing disease-associated pathways by network integration of untargeted metabolomics. Nat. Methods 13, 770–776 (2016).
CAS PubMed PubMed Central Google Scholar
- Olivon, F. et al. Bioactive natural products prioritization using massive multi-informational molecular networks. ACS Chem. Biol. 12, 2644–2651 (2017).
CAS PubMed Google Scholar
- Péresse, T. et al. Cytotoxic prenylated stilbenes isolated from Macaranga tanarius. J. Nat. Prod. 80, 2684–2691 (2017).
PubMed Google Scholar